메뉴 건너뛰기




Volumn , Issue , 2014, Pages 83-92

Explicit Factor Models for explainable recommendation based on phrase-level sentiment analysis

Author keywords

Collaborative Filtering; Recommendation explanation; Recommender systems; Sentiment analysis

Indexed keywords

ALGORITHMS; COLLABORATIVE FILTERING; DATA MINING; FORECASTING; RECOMMENDER SYSTEMS;

EID: 84904544672     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2600428.2609579     Document Type: Conference Paper
Times cited : (803)

References (45)
  • 1
    • 34250007634 scopus 로고    scopus 로고
    • Informed recommender: Basing recommendations on consumer product reviews
    • S. Aciar, D. Zhang, S. Simoff, and J. Debenham. Informed Recommender: Basing Recommendations on Consumer Product Reviews. Intelligent Systems, 22(3):39-47, 2007.
    • (2007) Intelligent Systems , vol.22 , Issue.3 , pp. 39-47
    • Aciar, S.1    Zhang, D.2    Simoff, S.3    Debenham, J.4
  • 3
    • 54949121314 scopus 로고    scopus 로고
    • The effects of transparency on trust in and acceptance of a content-based art recommender
    • H. Cramer, V. Evers, S. Ramlal, M. van Someren, et al. The Effects of Transparency on Trust in and Acceptance of a Content-Based Art Recommender. User Modeling and User-Adapted Interaction, 18(5):455-496, 2008.
    • (2008) User Modeling and User-Adapted Interaction , vol.18 , Issue.5 , pp. 455-496
    • Cramer, H.1    Evers, V.2    Ramlal, S.3    Van Someren, M.4
  • 4
    • 78649914423 scopus 로고    scopus 로고
    • Performance of recommender algorithms on top-N recommendation tasks
    • P. Cremonesi, Y. Koren, and R. Turrin. Performance of Recommender Algorithms on Top-N Recommendation Tasks. RecSys, pages 39-46, 2010.
    • (2010) RecSys , pp. 39-46
    • Cremonesi, P.1    Koren, Y.2    Turrin, R.3
  • 5
    • 33749575326 scopus 로고    scopus 로고
    • Orthogonal nonnegative matrix tri-factorizations for clustering
    • C. Ding, T. Li, W. Peng, and H. Park. Orthogonal Nonnegative Matrix Tri-Factorizations for Clustering. KDD, pages 126-135, 2006.
    • (2006) KDD , pp. 126-135
    • Ding, C.1    Li, T.2    Peng, W.3    Park, H.4
  • 6
    • 42549170653 scopus 로고    scopus 로고
    • A holistic lexicon based approach to opinion mining
    • X. Ding, B. Liu, and P. S. Yu. A Holistic Lexicon Based Approach to Opinion Mining. WSDM, 2008.
    • (2008) WSDM
    • Ding, X.1    Liu, B.2    Yu, P.S.3
  • 7
    • 79957953803 scopus 로고    scopus 로고
    • Beyond the stars: Improving rating predictions using review text content
    • G. Ganu, N. Elhadad, and A. Marian. Beyond the Stars: Improving Rating Predictions using Review Text Content. WebDB, 2009.
    • (2009) WebDB
    • Ganu, G.1    Elhadad, N.2    Marian, A.3
  • 8
    • 84904580359 scopus 로고    scopus 로고
    • Predicting the popularity of web 2.0 items based on user comments
    • X. He, M. Gao, M. Kan, Y. Liu, and K. Sugiyama. Predicting the Popularity of Web 2.0 Items based on User Comments. SIGIR, 2014.
    • (2014) SIGIR
    • He, X.1    Gao, M.2    Kan, M.3    Liu, Y.4    Sugiyama, K.5
  • 9
    • 84904569042 scopus 로고    scopus 로고
    • Comment-based multi-view clustering of web 2.0 items
    • X. He, M. Kan, P. Xie, and X. Chen. Comment-based Multi-View Clustering of Web 2.0 Items. WWW, 2014.
    • (2014) WWW
    • He, X.1    Kan, M.2    Xie, P.3    Chen, X.4
  • 10
    • 0034446870 scopus 로고    scopus 로고
    • Explaining collaborative filtering recommendations
    • J. Herlocker, J. Konstan, and J. Riedl. Explaining collaborative filtering recommendations. CSCW, 2000.
    • (2000) CSCW
    • Herlocker, J.1    Konstan, J.2    Riedl, J.3
  • 11
    • 12244305149 scopus 로고    scopus 로고
    • Mining and summarizing customer reviews
    • M. Hu and B. Liu. Mining and Summarizing Customer Reviews. KDD, pages 168-177, 2004.
    • (2004) KDD , pp. 168-177
    • Hu, M.1    Liu, B.2
  • 12
    • 79951741252 scopus 로고    scopus 로고
    • Beyond the stars: Exploiting free-text user reviews to improve the accuracy of movie recommendations
    • N. Jakob, S. H. Weber, M. C. Müller, et al. Beyond the Stars: Exploiting Free-Text User Reviews to Improve the Accuracy of Movie Recommendations. TSA, 2009.
    • (2009) TSA
    • Jakob, N.1    Weber, S.H.2    Müller, M.C.3
  • 13
    • 79951751450 scopus 로고    scopus 로고
    • Integrating collaborative filtering and sentiment analysis: A rating inference approach
    • C. W. ki Leung, S. C. fai Chan, and F. lai Chung. Integrating Collaborative Filtering and Sentiment Analysis: A Rating Inference Approach. ECAI, 2006.
    • (2006) ECAI
    • Ki Leung, C.W.1    Fai Chan, S.C.2    Lai Chung, F.3
  • 14
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Y. Koren, R. Bell, and C. Volinsky. Matrix Factorization Techniques for Recommender Systems. Computer, 2009.
    • (2009) Computer
    • Koren, Y.1    Bell, R.2    Volinsky, C.3
  • 15
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • D. D. Lee and H. S. Seung. Algorithms for Non-negative Matrix Factorization. Proc. NIPS, 2001.
    • (2001) Proc. NIPS
    • Lee, D.D.1    Seung, H.S.2
  • 16
    • 84880129466 scopus 로고    scopus 로고
    • Slope one predictors for online rating-based collaborative filtering
    • D. Lemire and A. Maclachlan. Slope One Predictors for Online Rating-Based Collaborative Filtering. SDM, 2005.
    • (2005) SDM
    • Lemire, D.1    Maclachlan, A.2
  • 17
    • 33746036191 scopus 로고    scopus 로고
    • Opinion observer: Analyzing and comparing opinions on the web
    • B. Liu, M. Hu, and J. Cheng. Opinion Observer: Analyzing and Comparing Opinions on the Web. WWW, 2005.
    • (2005) WWW
    • Liu, B.1    Hu, M.2    Cheng, J.3
  • 18
    • 84866007229 scopus 로고    scopus 로고
    • A survey of opinion mining and sentiment analysis
    • B. Liu and L. Zhang. A Survey of Opinion Mining and Sentiment Analysis. Jour. Mining Text Data, 2012.
    • (2012) Jour. Mining Text Data
    • Liu, B.1    Zhang, L.2
  • 19
    • 83655166226 scopus 로고    scopus 로고
    • Automatic construction of a context-aware sentiment lexicon: An optimization approach
    • Y. Lu, M. Castellanos, U. Dayal, and C. Zhai. Automatic construction of a context-aware sentiment lexicon: An optimization approach. WWW, 2011.
    • (2011) WWW
    • Lu, Y.1    Castellanos, M.2    Dayal, U.3    Zhai, C.4
  • 20
    • 84887587513 scopus 로고    scopus 로고
    • Hidden factors and hidden topics: Understanding rating dimensions with review text
    • J. McAuley and J. Leskovec. Hidden Factors and Hidden Topics: Understanding Rating Dimensions with Review Text. RecSys, pages 165-172, 2013.
    • (2013) RecSys , pp. 165-172
    • McAuley, J.1    Leskovec, J.2
  • 21
    • 84896062064 scopus 로고    scopus 로고
    • Recommendation using textual opinions
    • C. Musat, Y. Liang, and B. Faltings. Recommendation Using Textual Opinions. IJCAI, 2013.
    • (2013) IJCAI
    • Musat, C.1    Liang, Y.2    Faltings, B.3
  • 22
    • 84858426560 scopus 로고    scopus 로고
    • Dependency tree-based sentiment classification using CRFs with hidden variables
    • T. Nakagawa, K. Inui, and S. Kurohashi. Dependency Tree-based Sentiment Classification using CRFs with Hidden Variables. NAACL, 2010.
    • (2010) NAACL
    • Nakagawa, T.1    Inui, K.2    Kurohashi, S.3
  • 23
    • 37649028224 scopus 로고    scopus 로고
    • Finding and evaluating community structure in networks
    • M. Newman and M. Girvan. Finding and evaluating community structure in networks. Phys. Review, 2004.
    • (2004) Phys. Review
    • Newman, M.1    Girvan, M.2
  • 24
  • 25
    • 85141803251 scopus 로고    scopus 로고
    • Thumbs up? Sentiment classification using machine learning techniques
    • B. Pang, L. Lee, et al. Thumbs up? sentiment classification using machine learning techniques. EMNLP, 2002.
    • (2002) EMNLP
    • Pang, B.1    Lee, L.2
  • 26
    • 84883115169 scopus 로고    scopus 로고
    • Sentiment analysis of user comments for one-class collaborative filtering over TED talks
    • N. Pappas and A. P. Belis. Sentiment Analysis of User Comments for One-Class Collaborative Filtering over TED Talks. SIGIR, pages 773-776, 2013.
    • (2013) SIGIR , pp. 773-776
    • Pappas, N.1    Belis, A.P.2
  • 27
    • 84904547346 scopus 로고    scopus 로고
    • Opinion-driven matrix factorization for rating prediction
    • S. Pero and T. Horvath. Opinion-Driven Matrix Factorization for Rating Prediction. UMAP, 2013.
    • (2013) UMAP
    • Pero, S.1    Horvath, T.2
  • 28
    • 84859733155 scopus 로고    scopus 로고
    • BPR: Bayesian personalized ranking from implicit feedback
    • S. Rendle, C. Freudenthaler, et al. BPR: Bayesian Personalized Ranking from Implicit Feedback. UAI, 2009.
    • (2009) UAI
    • Rendle, S.1    Freudenthaler, C.2
  • 29
    • 31844451557 scopus 로고    scopus 로고
    • Fast maximum margin matrix factorization for collaborative prediction
    • J. Rennie and N. Srebro. Fast Maximum Margin Matrix Factorization for Collaborative Prediction. ICML, 2005.
    • (2005) ICML
    • Rennie, J.1    Srebro, N.2
  • 30
    • 56449131205 scopus 로고    scopus 로고
    • Bayesian probabilistic matrix factorization using markov chain Monte Carlo
    • R. Salakhutdinov and A. Mnih. Bayesian Probabilistic Matrix Factorization using Markov Chain Monte Carlo. Proc. ICML, 2008.
    • (2008) Proc. ICML
    • Salakhutdinov, R.1    Mnih, A.2
  • 31
    • 84893070906 scopus 로고    scopus 로고
    • Do social explanations work? Studying and modeling the effects of social explanations in recommender systems
    • A. Sharma and D. Cosley. Do Social Explanations Work? Studying and Modeling the Effects of Social Explanations in Recommender Systems. WWW, 2013.
    • (2013) WWW
    • Sharma, A.1    Cosley, D.2
  • 32
    • 1942516801 scopus 로고    scopus 로고
    • Weighted low-rank approximations
    • N. Srebro and T. Jaakkola. Weighted Low-rank Approximations. Proc. ICML, pages 720-727, 2003.
    • (2003) Proc. ICML , pp. 720-727
    • Srebro, N.1    Jaakkola, T.2
  • 33
    • 77954418047 scopus 로고    scopus 로고
    • A survey of collaborative filtering techniques
    • X. Su and T. M. Khoshgoftaar. A survey of collaborative filtering techniques. Advanc. in AI, 2009.
    • (2009) Advanc. in AI
    • Su, X.1    Khoshgoftaar, T.M.2
  • 35
    • 84901506407 scopus 로고    scopus 로고
    • A unified framework for emotional elements extraction based on finite state matching machine
    • Y. Tan, Y. Zhang, M. Zhang, Y. Liu, and S. Ma. A Unified Framework for Emotional Elements Extraction based on Finite State Matching Machine. NLPCC, 400:60-71, 2013.
    • (2013) NLPCC , vol.400 , pp. 60-71
    • Tan, Y.1    Zhang, Y.2    Zhang, M.3    Liu, Y.4    Ma, S.5
  • 36
    • 84897797577 scopus 로고    scopus 로고
    • Free text in user reviews: Their role in recommender systems
    • M. Terzi, M. A. Ferrario, and J. Whittle. Free text in user reviews: Their role in recommender systems. RecSys, 2011.
    • (2011) RecSys
    • Terzi, M.1    Ferrario, M.A.2    Whittle, J.3
  • 37
    • 48349129148 scopus 로고    scopus 로고
    • A survey of explanations in recommender systems
    • N. Tintarev and J. Masthoff. A Survey of Explanations in Recommender Systems. ICDE, 2007.
    • (2007) ICDE
    • Tintarev, N.1    Masthoff, J.2
  • 38
    • 79960495877 scopus 로고    scopus 로고
    • Designing and evaluating explanations for recommender systems
    • N. Tintarev and J. Masthoff. Designing and Evaluating Explanations for Recommender Systems. Recommender Systems Handbook, pages 479-510, 2011.
    • (2011) Recommender Systems Handbook , pp. 479-510
    • Tintarev, N.1    Masthoff, J.2
  • 39
    • 72249096877 scopus 로고    scopus 로고
    • Tagsplanations: Explaining recommendations using tags
    • J. Vig, S. Sen, and J. Riedl. Tagsplanations: Explaining Recommendations Using Tags. IUI, 2009.
    • (2009) IUI
    • Vig, J.1    Sen, S.2    Riedl, J.3
  • 40
    • 33644632271 scopus 로고    scopus 로고
    • Annotating expressions of opinions and emotions in language
    • J. Wiebe, T. Wilson, and C. Cardie. Annotating expressions of opinions and emotions in language. LREC, 2005.
    • (2005) LREC
    • Wiebe, J.1    Wilson, T.2    Cardie, C.3
  • 41
    • 80053247760 scopus 로고    scopus 로고
    • Recognizing contextual polarity in phrase-level sentiment analysis
    • T. Wilson, J. Wiebe, et al. Recognizing contextual polarity in phrase-level sentiment analysis. EMNLP, 2005.
    • (2005) EMNLP
    • Wilson, T.1    Wiebe, J.2
  • 42
    • 80053250358 scopus 로고    scopus 로고
    • Multi-level structured models for document-level sentiment classification
    • A. Yessenalina, Y. Yue, et al. Multi-level structured models for document-level sentiment classification. EMNLP, 2010.
    • (2010) EMNLP
    • Yessenalina, A.1    Yue, Y.2
  • 43
    • 84904573681 scopus 로고    scopus 로고
    • Do users rate or review? Boost phrase-level sentiment labeling with review-level sentiment classification
    • Y. Zhang, H. Zhang, M. Zhang, Y. Liu, et al. Do Users Rate or Review? Boost Phrase-level Sentiment Labeling with Review-level Sentiment Classification. SIGIR, 2014.
    • (2014) SIGIR
    • Zhang, Y.1    Zhang, H.2    Zhang, M.3    Liu, Y.4
  • 44
    • 84883126990 scopus 로고    scopus 로고
    • Improve collaborative filtering through bordered block diagonal form matrices
    • Y. Zhang, M. Zhang, Y. Liu, and S. Ma. Improve Collaborative Filtering Through Bordered Block Diagonal Form Matrices. SIGIR, 2013.
    • (2013) SIGIR
    • Zhang, Y.1    Zhang, M.2    Liu, Y.3    Ma, S.4
  • 45
    • 84893055784 scopus 로고    scopus 로고
    • Localized matrix factorization for recommendation based on matrix block diagonal forms
    • Y. Zhang, M. Zhang, Y. Liu, S. Ma, and S. Feng. Localized Matrix Factorization for Recommendation based on Matrix Block Diagonal Forms. WWW, 2013.
    • (2013) WWW
    • Zhang, Y.1    Zhang, M.2    Liu, Y.3    Ma, S.4    Feng, S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.