메뉴 건너뛰기




Volumn 14, Issue 2, 2016, Pages

A novel semi-supervised learning framework for hyperspectral image classification

Author keywords

boxed based smooth ordering; Hyperspectral image classification; multiple 1D embedding based interpolation; semi supervised learning

Indexed keywords

INDEPENDENT COMPONENT ANALYSIS; INTERPOLATION; PIXELS; SPECTROSCOPY; SUPERVISED LEARNING;

EID: 84959248120     PISSN: 02196913     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0219691316400051     Document Type: Article
Times cited : (10)

References (26)
  • 1
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi and V. Sindhwani, Manifold regularization: A geometric framework for learning from labeled and unlabeled examples, J.Mach. Learn. Res. 7 (2006) 2399-2434.
    • (2006) J.Mach. Learn. Res. , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 3
    • 84888297111 scopus 로고    scopus 로고
    • Spectral-spatial classification of multispectral images using kernel feature space representation
    • S. Bernabe, P. R. Marpu, A. Plaza, M. D. Mura and J. A. Benediktsson, Spectral-spatial classification of multispectral images using kernel feature space representation, IEEE Geosci. Remote Sens. Lett. 11(1) (2014) 288-292.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.1 , pp. 288-292
    • Bernabe, S.1    Marpu, P.R.2    Plaza, A.3    Mura, M.D.4    Benediktsson, J.A.5
  • 4
    • 33750819329 scopus 로고    scopus 로고
    • A novel transductive SVM for semisupervised classification of remote sensing images
    • L. Bruzzone, M. Chi andM. Marconcini, A novel transductive SVM for semisupervised classification of remote sensing images, IEEE Trans. Geosci. Remote Sens. 44(11) (2006) 3363-3373.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.11 , pp. 3363-3373
    • Bruzzone, L.1    Chi, M.2    Marconcini, M.3
  • 5
    • 39049145967 scopus 로고    scopus 로고
    • Semi-supervised graph-based hyperspectral image classification
    • G. Camps-Valls, T. Bandos and D. Zhou, Semi-supervised graph-based hyperspectral image classification, IEEE Trans. Geosci. Remote Sens. 45(10) (2007) 3044-3054.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.10 , pp. 3044-3054
    • Camps-Valls, G.1    Bandos, T.2    Zhou, D.3
  • 7
    • 85032751634 scopus 로고    scopus 로고
    • Advances in hyperspectral image classification: Earth monitoring with statistical learning methods
    • G. Camps-Valls, D. Tuia, L. Bruzzone and J. A. Benediktsson, Advances in hyperspectral image classification: Earth monitoring with statistical learning methods, IEEE Signal Process. Mag. 31(1) (2014) 45-54.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.1 , pp. 45-54
    • Camps-Valls, G.1    Tuia, D.2    Bruzzone, L.3    Benediktsson, J.A.4
  • 8
    • 80053571096 scopus 로고    scopus 로고
    • Hyperspectral image classification using dictionary-based sparse representation
    • Y. Chen, N. M. Nasrabadi and T. D. Tran, Hyperspectral image classification using dictionary-based sparse representation, IEEE Trans. Geosci. Remote Sens. 49(10) (2011) 3973-3985.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.10 , pp. 3973-3985
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 11
    • 80052740627 scopus 로고    scopus 로고
    • A spatial-spectral kernel-based approach for the classification of remote-sensing images
    • M. Fauvel, J. Chanussot and J. A. Benediktsson, A spatial-spectral kernel-based approach for the classification of remote-sensing images, Pattern Recognit. 45(1) (2012) 381-392.
    • (2012) Pattern Recognit. , vol.45 , Issue.1 , pp. 381-392
    • Fauvel, M.1    Chanussot, J.2    Benediktsson, J.A.3
  • 12
    • 84900815487 scopus 로고    scopus 로고
    • Automatic spectral-spatial classification framework based on attribute profiles and supervised feature extraction
    • P. Ghamisi, J. A. Benediktsson and J. R. Sveinsson, Automatic spectral-spatial classification framework based on attribute profiles and supervised feature extraction, IEEE Trans. Geosci. Remote Sens. 52(9) (2014) 5771-5782.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.9 , pp. 5771-5782
    • Ghamisi, P.1    Benediktsson, J.A.2    Sveinsson, J.R.3
  • 13
    • 84921020001 scopus 로고    scopus 로고
    • A survey on spectral-spatial classification techniques based on attribute profiles
    • P. Ghamisi, M. D. Mura and J. A. Benediktsson, A survey on spectral-spatial classification techniques based on attribute profiles, IEEE Trans. Geosci. Remote Sens. 53(5) (2014) 2335-2353.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.5 , pp. 2335-2353
    • Ghamisi, P.1    Mura, M.D.2    Benediktsson, J.A.3
  • 15
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • G. F. Hughes, On the mean accuracy of statistical pattern recognizers, IEEE Trans. Inf. Theory 14(1) (1968) 55-63.
    • (1968) IEEE Trans. Inf. Theory , vol.14 , Issue.1 , pp. 55-63
    • Hughes, G.F.1
  • 16
    • 78049282844 scopus 로고    scopus 로고
    • Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning
    • J. Li, J. M. Bioucas-Dias and A. Plaza, Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning, IEEE Trans. Geosci. Remote Sens. 48(11) (2010) 4085-4098.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4085-4098
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 17
    • 80052087931 scopus 로고    scopus 로고
    • Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields
    • J. Li, J. M. Bioucas-Dias and A. Plaza, Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields, IEEE Trans. Geosci. Remote Sens. 50(3) (2012) 809-823.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 809-823
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 18
    • 84906510987 scopus 로고    scopus 로고
    • Hyperspectral image classification using functional data analysis
    • H. Li, G. Xiao, T. Xia, Y. Y. Tang and L. Li, Hyperspectral image classification using functional data analysis, IEEE Trans. Cybern. 44(9) (2014) 1544-1555.
    • (2014) IEEE Trans. Cybern. , vol.44 , Issue.9 , pp. 1544-1555
    • Li, H.1    Xiao, G.2    Xia, T.3    Tang, Y.Y.4    Li, L.5
  • 19
    • 84939243683 scopus 로고    scopus 로고
    • Hyperspectral image classification using spectral-spatial composite kernels discriminant analysis
    • H. Li, Z. Ye and G. Xiao, Hyperspectral image classification using spectral-spatial composite kernels discriminant analysis, IEEE J. Sel. Topics Appl. Earth Observations Remote Sens. 8(6) (2014) 2341-2350.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observations Remote Sens. , vol.8 , Issue.6 , pp. 2341-2350
    • Li, H.1    Ye, Z.2    Xiao, G.3
  • 20
    • 78049264379 scopus 로고    scopus 로고
    • Local manifold learning-based k-nearest-neighbor for hyperspectral image classification
    • L. Ma, M. M. Crawford and J. Tian, Local manifold learning-based k-nearest-neighbor for hyperspectral image classification, IEEE Trans. Geosci. Remote Sens. 48(11) (2010) 4099-4109.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4099-4109
    • Ma, L.1    Crawford, M.M.2    Tian, J.3
  • 21
    • 84877883372 scopus 로고    scopus 로고
    • Image processing using smooth ordering of its patches
    • I. Ram, M. Elad and I. Cohen, Image processing using smooth ordering of its patches, IEEE Trans. Geosci. Remote Sens. 22(7) (2013) 2764-2774.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.22 , Issue.7 , pp. 2764-2774
    • Ram, I.1    Elad, M.2    Cohen, I.3
  • 22
    • 77951295198 scopus 로고    scopus 로고
    • Semisupervised neural networks for efficient hyperspectral image classification
    • F. Ratle, G. Camps-Valls and J. Weston, Semisupervised neural networks for efficient hyperspectral image classification, IEEE Trans. Geosci. Remote Sens. 48(5) (2010) 2271-2282.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.5 , pp. 2271-2282
    • Ratle, F.1    Camps-Valls, G.2    Weston, J.3
  • 23
    • 0028499630 scopus 로고
    • The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon
    • B. Shahshahani and D. Landgrebe, The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon, IEEE Trans. Geosci. Remote Sens. 32(5) (1994) 1087-1095.
    • (1994) IEEE Trans. Geosci. Remote Sens. , vol.32 , Issue.5 , pp. 1087-1095
    • Shahshahani, B.1    Landgrebe, D.2
  • 24
    • 84959218396 scopus 로고    scopus 로고
    • Semi-supervised learning using ensembles of multiple 1D-embedding-based label boosting
    • J. Wang, Semi-supervised learning using ensembles of multiple 1D-embedding-based label boosting, Int. J. Wavelets Multiresolut. Inf. Process. 14(2) (2016) 33 pp.
    • (2016) Int. J. Wavelets Multiresolut. Inf. Process. , vol.14 , Issue.2
    • Wang, J.1
  • 25
    • 84959200921 scopus 로고    scopus 로고
    • Semi-supervised learning using multiple one-dimensional embedding-based adaptive interpolation
    • J. Wang, Semi-supervised learning using multiple one-dimensional embedding-based adaptive interpolation, Int. J. Wavelets Multiresolut. Inf. Process. 14(2) (2016) 11 pp.
    • (2016) Int. J. Wavelets Multiresolut. Inf. Process. , vol.14 , Issue.2
    • Wang, J.1
  • 26
    • 84907474375 scopus 로고    scopus 로고
    • Semisupervised hyperspectral classification using task-driven dictionary learning with Laplacian regularization
    • Z. Wang, N. M. Nasrabadi and T. S. Huang, Semisupervised hyperspectral classification using task-driven dictionary learning with Laplacian regularization, IEEE Trans. Geosci. Remote Sens. 53(3) (2014) 1161-1173.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.3 , pp. 1161-1173
    • Wang, Z.1    Nasrabadi, N.M.2    Huang, T.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.