메뉴 건너뛰기




Volumn , Issue , 2013, Pages 1817-1824

Action and event recognition with fisher vectors on a compact feature set

Author keywords

action localization; action recognition; bag of visual words; dense trajectories; evaluation; event recognition; Fisher vectors; uncontrolled realistic videos

Indexed keywords

COMPUTER SCIENCE; COMPUTERS; ELECTRICAL ENGINEERING;

EID: 84898791167     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2013.228     Document Type: Conference Paper
Times cited : (384)

References (45)
  • 1
    • 84859779573 scopus 로고    scopus 로고
    • Activities as time series of human postures
    • W. Brendel and S. Todorovic. Activities as time series of human postures. In ECCV, 2010.
    • (2010) In ECCV
    • Brendel, W.1    Todorovic, S.2
  • 3
    • 84898420173 scopus 로고    scopus 로고
    • The devil is in the details: An evaluation of recent feature encoding methods
    • K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman. The devil is in the details: an evaluation of recent feature encoding methods. In BMVC, 2011.
    • (2011) In BMVC
    • Chatfield, K.1    Lempitsky, V.2    Vedaldi, A.3    Zisserman, A.4
  • 5
    • 77951298115 scopus 로고    scopus 로고
    • The pascal visual object classes (VOC) challenge
    • June
    • M. Everingham, L. van Gool, C. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (VOC) challenge. IJCV, 88(2):303-338, June 2010.
    • (2010) IJCV , vol.88 , Issue.2 , pp. 303-338
    • Everingham, M.1    Van Gool, L.2    Williams, C.3    Winn, J.4    Zisserman, A.5
  • 6
    • 80052915321 scopus 로고    scopus 로고
    • Actom sequence models for efficient action detection
    • A. Gaidon, Z. Harchaoui, and C. Schmid. Actom sequence models for efficient action detection. In CVPR, 2011.
    • (2011) In CVPR
    • Gaidon, A.1    Harchaoui, Z.2    Schmid, C.3
  • 7
    • 84898405815 scopus 로고    scopus 로고
    • Recognizing activities with cluster-trees of tracklets
    • A. Gaidon, Z. Harchaoui, and C. Schmid. Recognizing activities with cluster-trees of tracklets. In BMVC, 2012.
    • (2012) In BMVC
    • Gaidon, A.1    Harchaoui, Z.2    Schmid, C.3
  • 8
    • 69549121743 scopus 로고    scopus 로고
    • Observing humanobject interactions: Using spatial and functional compatibility for recognition
    • A. Gupta, A. Kembhavi, and L. Davis. Observing humanobject interactions: using spatial and functional compatibility for recognition. PAMI, 31(10):1775-1789, 2009.
    • (2009) PAMI , vol.31 , Issue.10 , pp. 1775-1789
    • Gupta, A.1    Kembhavi, A.2    Davis, L.3
  • 9
    • 84856147053 scopus 로고    scopus 로고
    • Object, scene and actions: Combining multiple features for human action recognition
    • N. Ikizler-Cinbis and S. Sclaroff. Object, scene and actions: combining multiple features for human action recognition. In ECCV, 2010.
    • (2010) In ECCV
    • Ikizler-Cinbis, N.1    Sclaroff, S.2
  • 10
    • 84887479105 scopus 로고    scopus 로고
    • Recognizing complex events using large margin joint low-level event model
    • H. Izadinia and M. Shah. Recognizing complex events using large margin joint low-level event model. In ECCV, 2012.
    • (2012) In ECCV
    • Izadinia, H.1    Shah, M.2
  • 11
    • 84887398298 scopus 로고    scopus 로고
    • Better exploiting motion for better action recognition
    • M. Jain, H. J́egou, and P. Bouthemy. Better exploiting motion for better action recognition. In CVPR, 2013.
    • (2013) In CVPR
    • Jain, M.1    J́egou, H.2    Bouthemy, P.3
  • 12
    • 84877645596 scopus 로고    scopus 로고
    • Trajectory-based modeling of human actions with motion reference points
    • Y.-G. Jiang, Q. Dai, X. Xue, W. Liu, and C.-W. Ngo. Trajectory-based modeling of human actions with motion reference points. In ECCV, 2012.
    • (2012) In ECCV
    • Jiang, Y.-G.1    Dai, Q.2    Xue, X.3    Liu, W.4    Ngo, C.-W.5
  • 14
    • 84883368489 scopus 로고    scopus 로고
    • Motion interchange patterns for action recognition in unconstrained videos
    • O. Kliper-Gross, Y. Gurovich, T. Hassner, and L. Wolf. Motion interchange patterns for action recognition in unconstrained videos. In ECCV, 2012.
    • (2012) In ECCV
    • Kliper-Gross, O.1    Gurovich, Y.2    Hassner, T.3    Wolf, L.4
  • 15
    • 84856626270 scopus 로고    scopus 로고
    • Modeling spatial layout with Fisher vectors for image categorization
    • J. Krapac, J. Verbeek, and F. Jurie. Modeling spatial layout with Fisher vectors for image categorization. In ICCV, 2011.
    • (2011) In ICCV
    • Krapac, J.1    Verbeek, J.2    Jurie, F.3
  • 18
    • 50649122769 scopus 로고    scopus 로고
    • Retrieving actions in movies
    • I. Laptev and P. Ṕerez. Retrieving actions in movies. In ICCV, 2007.
    • (2007) In ICCV
    • Laptev, I.1    Ṕerez, P.2
  • 19
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006.
    • (2006) In CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 20
    • 80052874098 scopus 로고    scopus 로고
    • Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis
    • Q. Le, W. Zou, S. Yeung, and A. Ng. Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. In CVPR, 2011.
    • (2011) In CVPR
    • Le, Q.1    Zou, W.2    Yeung, S.3    Ng, A.4
  • 21
    • 79951678228 scopus 로고    scopus 로고
    • Recognizing realistic actions from videos
    • J. Liu, J. Luo, and M. Shah. Recognizing realistic actions from videos. In CVPR, 2009.
    • (2009) In CVPR
    • Liu, J.1    Luo, J.2    Shah, M.3
  • 22
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91-110, 2004.
    • (2004) IJCV , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.1
  • 24
    • 84893353862 scopus 로고    scopus 로고
    • Dynamic eye movement datasets and learnt saliency models for visual action recognition
    • S. Mathe and C. Sminchisescu. Dynamic eye movement datasets and learnt saliency models for visual action recognition. In ECCV, 2012.
    • (2012) In ECCV
    • Mathe, S.1    Sminchisescu, C.2
  • 25
    • 79958738498 scopus 로고    scopus 로고
    • Representing pairwise spatial and temporal relations for action recognition
    • P. Matikainen, M. Hebert, and R. Sukthankar. Representing pairwise spatial and temporal relations for action recognition. In ECCV, 2010.
    • (2010) In ECCV
    • Matikainen, P.1    Hebert, M.2    Sukthankar, R.3
  • 26
    • 84899104715 scopus 로고    scopus 로고
    • Spatially local coding for object recognition
    • S. McCann and D. Lowe. Spatially local coding for object recognition. In ACCV, 2012.
    • (2012) In ACCV
    • McCann, S.1    Lowe, D.2
  • 28
    • 80052874353 scopus 로고    scopus 로고
    • Modeling temporal structure of decomposable motion segments for activity classification
    • J. Niebles, C.-W. Chen, and F.-F. Li. Modeling temporal structure of decomposable motion segments for activity classification. In ECCV, 2010.
    • (2010) In ECCV
    • Niebles, J.1    Chen, C.-W.2    Li, F.-F.3
  • 30
    • 77956008923 scopus 로고    scopus 로고
    • Large-scale image categorization with explicit data embedding
    • F. Perronnin, J. Śanchez, and Y. Liu. Large-scale image categorization with explicit data embedding. In CVPR, 2010.
    • (2010) In CVPR
    • Perronnin, F.1    Śanchez, J.2    Liu, Y.3
  • 31
    • 84874537383 scopus 로고    scopus 로고
    • Explicit modeling of human-object interactions in realistic videos
    • A. Prest, V. Ferrari, and C. Schmid. Explicit modeling of human-object interactions in realistic videos. PAMI, 35(4):835-848, 2013.
    • (2013) PAMI , vol.35 , Issue.4 , pp. 835-848
    • Prest, A.1    Ferrari, V.2    Schmid, C.3
  • 34
    • 84866552328 scopus 로고    scopus 로고
    • Modeling the spatial layout of images beyond spatial pyramids
    • J. Śanchez, F. Perronnin, and T. de Campos. Modeling the spatial layout of images beyond spatial pyramids. Pattern Recognition Letters, 33(16):2216-2223, 2012.
    • (2012) Pattern Recognition Letters , vol.33 , Issue.16 , pp. 2216-2223
    • Śanchez, J.1    Perronnin, F.2    De Campos, T.3
  • 35
    • 84883487458 scopus 로고    scopus 로고
    • Image classification with the Fisher vector: Theory and practice
    • June
    • J. Sanchez, F. Perronnin, T. Mensink, and J. Verbeek. Image classification with the Fisher vector: Theory and practice. IJCV, 105(3):222-245, June 2013.
    • (2013) IJCV , vol.105 , Issue.3 , pp. 222-245
    • Sanchez, J.1    Perronnin, F.2    Mensink, T.3    Verbeek, J.4
  • 36
    • 84898403515 scopus 로고    scopus 로고
    • Learning discriminative space-time actions from weakly labelled videos
    • M. Sapienza, F. Cuzzolin, and P. Torr. Learning discriminative space-time actions from weakly labelled videos. In BMVC, 2012.
    • (2012) In BMVC
    • Sapienza, M.1    Cuzzolin, F.2    Torr, P.3
  • 37
    • 10044233701 scopus 로고    scopus 로고
    • Recognizing human actions: A local SVM approach
    • C. Schuldt, I. Laptev, and B. Caputo. Recognizing human actions: a local SVM approach. In ICPR, 2004.
    • (2004) In ICPR
    • Schuldt, C.1    Laptev, I.2    Caputo, B.3
  • 38
    • 0345414182 scopus 로고    scopus 로고
    • Video Google: A text retrieval approach to object matching in videos
    • J. Sivic and A. Zisserman. Video Google: a text retrieval approach to object matching in videos. In ICCV, 2003.
    • (2003) In ICCV
    • Sivic, J.1    Zisserman, A.2
  • 39
    • 84875607338 scopus 로고    scopus 로고
    • Large-scale web video event classification by use of Fisher vectors
    • C. Sun and R. Nevatia. Large-scale web video event classification by use of Fisher vectors. In WACV, 2013.
    • (2013) In WACV
    • Sun, C.1    Nevatia, R.2
  • 40
    • 84866658784 scopus 로고    scopus 로고
    • Learning latent temporal structure for complex event detection
    • K. Tang, L. Fei-Fei, and D. Koller. Learning latent temporal structure for complex event detection. In CVPR, 2012.
    • (2012) In CVPR
    • Tang, K.1    Fei-Fei, L.2    Koller, D.3
  • 41
    • 84876945537 scopus 로고    scopus 로고
    • Dense trajectories and motion boundary descriptors for action recognition
    • H. Wang, A. Kl̈aser, C. Schmid, and C.-L. Liu. Dense trajectories and motion boundary descriptors for action recognition. IJCV, 2013.
    • (2013) IJCV
    • Wang, H.1    Kl̈aser, A.2    Schmid, C.3    Liu, C.-L.4
  • 42
    • 84898805910 scopus 로고    scopus 로고
    • Action recognition with improved trajectories
    • H. Wang and C. Schmid. Action recognition with improved trajectories. In ICCV, 2013.
    • (2013) In ICCV
    • Wang, H.1    Schmid, C.2
  • 43
    • 84898890371 scopus 로고    scopus 로고
    • Evaluation of local spatio-temporal features for action recognition
    • H. Wang, M. Ullah, A. Kl̈aser, I. Laptev, and C. Schmid. Evaluation of local spatio-temporal features for action recognition. In BMVC, 2009.
    • (2009) In BMVC
    • Wang, H.1    Ullah, M.2    Kl̈aser, A.3    Laptev, I.4    Schmid, C.5
  • 44
    • 84892621904 scopus 로고    scopus 로고
    • A comparative study of encoding, pooling and normalization methods for action recognition
    • X. Wang, L. Wang, and Y. Qiao. A comparative study of encoding, pooling and normalization methods for action recognition. In ACCV, 2012.
    • (2012) In ACCV
    • Wang, X.1    Wang, L.2    Qiao, Y.3
  • 45
    • 84887341817 scopus 로고    scopus 로고
    • Complex events detection using datadriven concepts
    • Y. Yang and M. Shah. Complex events detection using datadriven concepts. In ECCV, 2012.
    • (2012) In ECCV
    • Yang, Y.1    Shah, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.