메뉴 건너뛰기




Volumn , Issue , 2013, Pages 867-874

SCaLE: Supervised and cascaded laplacian eigenmaps for visual object recognition based on nearest neighbors

Author keywords

deep leanring; feature combination; image classification; object recognition

Indexed keywords

COMPUTER VISION PROBLEMS; DEEP LEANRING; ESSENTIAL CHARACTERISTIC; FEATURE COMBINATION; INTERMEDIATE REPRESENTATIONS; NEAREST NEIGHBOR CLASSIFIERS; NON-LINEAR REGRESSION; VISUAL OBJECT RECOGNITION;

EID: 84887349346     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2013.117     Document Type: Conference Paper
Times cited : (36)

References (32)
  • 1
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • 3, 4
    • M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural computation, 15(6):1373-1396, 2003. 3, 4
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 2
    • 51949090223 scopus 로고    scopus 로고
    • Defense of nearest-neighbor based image classification
    • 6
    • O. Boiman, E. Shechtman, and M. Irani. In defense of nearest-neighbor based image classification. In CVPR, 2008. 6
    • (2008) CVPR
    • Boiman, O.1    Shechtman, E.2    Irani, M.3
  • 3
    • 36849014901 scopus 로고    scopus 로고
    • Representing shape with a spatial pyramid kernel
    • 4
    • A. Bosch, A. Zisserman, and X. Munoz. Representing shape with a spatial pyramid kernel. In CIVR, 2007. 4
    • (2007) CIVR
    • Bosch, A.1    Zisserman, A.2    Munoz, X.3
  • 4
    • 50649101132 scopus 로고    scopus 로고
    • Image classification using random forests and ferns
    • 4, 6
    • A. Bosch, A. Zisserman, and X. Muoz. Image classification using random forests and ferns. In ICCV, 2007. 4, 6
    • (2007) ICCV
    • Bosch, A.1    Zisserman, A.2    Muoz, X.3
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • 5
    • L. Breiman. Random forests. Machine learning, 45(1):5-32, 2001. 5
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 7
    • 77956772432 scopus 로고
    • Neural dynamics of category learning and recognition: Attention, memory consolidation, and amnesia
    • 1
    • G. A. Carpenter and S. Grossberg. Neural dynamics of category learning and recognition: Attention, memory consolidation, and amnesia. Advances in Psychology, 42:239-286, 1987. 1
    • (1987) Advances in Psychology , vol.42 , pp. 239-286
    • Carpenter, G.A.1    Grossberg, S.2
  • 8
    • 84898420173 scopus 로고    scopus 로고
    • The devil is in the details: An evaluation of recent feature encoding methods
    • 7
    • K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman. The devil is in the details: an evaluation of recent feature encoding methods. In BMVC, 2011. 7
    • (2011) BMVC
    • Chatfield, K.1    Lempitsky, V.2    Vedaldi, A.3    Zisserman, A.4
  • 10
    • 84866714584 scopus 로고    scopus 로고
    • Multi-column deep neural networks for image classification
    • 2, 6
    • D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image classification. In CVPR, 2012. 2, 6
    • (2012) CVPR
    • Ciresan, D.1    Meier, U.2    Schmidhuber, J.3
  • 11
    • 80053442434 scopus 로고    scopus 로고
    • The importance of encoding versus training with sparse coding and vector quantization
    • 6
    • A. Coates and A. Ng. The importance of encoding versus training with sparse coding and vector quantization. In ICML, 2011. 6
    • (2011) ICML
    • Coates, A.1    Ng, A.2
  • 14
    • 34047174674 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
    • 2, 5
    • L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. Computer Vision and Image Understanding, 106(1):59-70, 2007. 2, 5
    • (2007) Computer Vision and Image Understanding , vol.106 , Issue.1 , pp. 59-70
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 15
    • 51949101472 scopus 로고    scopus 로고
    • Similarity-based cross-layered hierarchical representation for object categorization
    • 6
    • S. Fidler, M. Boben, and A. Leonardis. Similarity-based cross-layered hierarchical representation for object categorization. In CVPR, 2008. 6
    • (2008) CVPR
    • Fidler, S.1    Boben, M.2    Leonardis, A.3
  • 16
    • 0019152630 scopus 로고
    • Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift
    • 1, 2
    • K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological cybernetics, 36(4):193-202, 1980. 1, 2
    • (1980) Position. Biological Cybernetics , vol.36 , Issue.4 , pp. 193-202
    • Fukushima, K.1
  • 17
    • 85067032737 scopus 로고    scopus 로고
    • On feature combination for multiclass object classification
    • 2, 5, 6
    • P. Gehler and S. Nowozin. On feature combination for multiclass object classification. In ICCV, 2009. 2, 5, 6
    • (2009) ICCV
    • Gehler, P.1    Nowozin, S.2
  • 19
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • 6
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006. 6
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 21
    • 5044231640 scopus 로고    scopus 로고
    • Learning methods for generic object recognition with invariance to pose and lighting
    • 2, 5, 6
    • Y. LeCun, F. Huang, and L. Bottou. Learning methods for generic object recognition with invariance to pose and lighting. In CVPR, 2004. 2, 5, 6
    • (2004) CVPR
    • Lecun, Y.1    Huang, F.2    Bottou, L.3
  • 22
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • 4
    • D. Lowe. Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60(2):91-110, 2004. 4
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.1
  • 23
    • 84864446994 scopus 로고    scopus 로고
    • Sparse spatial coding: A novel approach for efficient and accurate object recognition
    • 6
    • G. Oliveira, E. Nascimento, A. Vieira, and M. Campos. Sparse spatial coding: A novel approach for efficient and accurate object recognition. In ICRA, 2012. 6
    • (2012) ICRA
    • Oliveira, G.1    Nascimento, E.2    Vieira, A.3    Campos, M.4
  • 24
    • 34948815101 scopus 로고    scopus 로고
    • Fisher kernels on visual vocabularies for image categorization
    • 7
    • F. Perronnin and C. Dance. Fisher kernels on visual vocabularies for image categorization. In CVPR, 2007. 7
    • (2007) CVPR
    • Perronnin, F.1    Dance, C.2
  • 26
    • 51949111396 scopus 로고    scopus 로고
    • Learning subcategory relevances for category recognition
    • 2, 6
    • S. Todorovic and N. Ahuja. Learning subcategory relevances for category recognition. In CVPR, 2008. 2, 6
    • (2008) CVPR
    • Todorovic, S.1    Ahuja, N.2
  • 28
    • 77955996870 scopus 로고    scopus 로고
    • Locality-constrained linear coding for image classification
    • 2, 6
    • J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained linear coding for image classification. In CVPR, 2010. 2, 6
    • (2010) CVPR
    • Wang, J.1    Yang, J.2    Yu, K.3    Lv, F.4    Huang, T.5    Gong, Y.6
  • 29
    • 33749550361 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • 4
    • K. Weinberger, J. Blitzer, and L. Saul. Distance metric learning for large margin nearest neighbor classification. In NIPS, 2006. 4
    • (2006) NIPS
    • Weinberger, K.1    Blitzer, J.2    Saul, L.3
  • 31
    • 77952494909 scopus 로고    scopus 로고
    • Group-sensitive multiple kernel learning for object categorization
    • 2, 6, 7
    • J. Yang, Y. Li, Y. Tian, L. Duan, andW. Gao. Group-sensitive multiple kernel learning for object categorization. In ICCV, 2009. 2, 6, 7
    • (2009) ICCV
    • Yang, J.1    Li, Y.2    Tian, Y.3    Duan, L.4    Gao, W.5
  • 32
    • 80052886214 scopus 로고    scopus 로고
    • Image classification using super-vector coding of local image descriptors
    • 7
    • X. Zhou, K. Yu, T. Zhang, and T. S. Huang. Image classification using super-vector coding of local image descriptors. In ECCV, 2010. 7
    • (2010) ECCV
    • Zhou, X.1    Yu, K.2    Zhang, T.3    Huang, T.S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.