메뉴 건너뛰기




Volumn , Issue , 2014, Pages 3866-3873

Adaptive partial differential equation learning for visual saliency detection

Author keywords

Learning Based PDEs; Saliency Detection; Submodular Optimization

Indexed keywords

BOUNDARY CONDITIONS; CONSTRAINED OPTIMIZATION; PATTERN RECOGNITION; VISUALIZATION;

EID: 84909604910     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2014.494     Document Type: Conference Paper
Times cited : (136)

References (41)
  • 3
    • 84866657764 scopus 로고    scopus 로고
    • SLIC superpixels compared to state-of-the-art superpixel methods
    • R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE T. PAMI, 34(11):2274-2282, 2012.
    • (2012) IEEE T. PAMI , vol.34 , Issue.11 , pp. 2274-2282
    • Achanta, R.1    Shaji, A.2    Smith, K.3    Lucchi, A.4    Fua, P.5    Susstrunk, S.6
  • 4
    • 84855599508 scopus 로고    scopus 로고
    • Maximizing a monotone submodular function subject to a matroid constraint
    • G. Calinescuy, C. Chekuri, M. Pal, and J. Vondrak. Maximizing a monotone submodular function subject to a matroid constraint. SIAM J. Computing, 40(6):1740-1766, 2011.
    • (2011) SIAM J. Computing , vol.40 , Issue.6 , pp. 1740-1766
    • Calinescuy, G.1    Chekuri, C.2    Pal, M.3    Vondrak, J.4
  • 5
    • 42649129178 scopus 로고    scopus 로고
    • Image processing and analysis: Variational, PDE, wavelet, and stochastic methods
    • T. Chan and J. Shen. Image processing and analysis: variational, PDE, wavelet, and stochastic methods. SIAM, 2005.
    • (2005) SIAM
    • Chan, T.1    Shen, J.2
  • 6
    • 84863014339 scopus 로고    scopus 로고
    • Fusing generic objectness and visual saliency for salient object detection
    • K.-Y. Chang, T.-L. Liu, H.-T. Chen, and S.-H. Lai. Fusing generic objectness and visual saliency for salient object detection. In ICCV, 2011.
    • (2011) ICCV
    • Chang, K.-Y.1    Liu, T.-L.2    Chen, H.-T.3    Lai, S.-H.4
  • 8
    • 57049132103 scopus 로고    scopus 로고
    • Nonlocal operators with applications to image processing
    • G. Gilboa and S. Osher. Nonlocal operators with applications to image processing. Multiscale Modeling & Simulation, 7(3):1005-1028, 2008.
    • (2008) Multiscale Modeling & Simulation , vol.7 , Issue.3 , pp. 1005-1028
    • Gilboa, G.1    Osher, S.2
  • 9
    • 84865331032 scopus 로고    scopus 로고
    • Context-aware saliency detection
    • S. Goferman, L. Zelnik-Manor, and A. Tal. Context-aware saliency detection. IEEE T. PAMI, 34(10):1915-1926, 2012.
    • (2012) IEEE T. PAMI , vol.34 , Issue.10 , pp. 1915-1926
    • Goferman, S.1    Zelnik-Manor, L.2    Tal, A.3
  • 10
    • 84864037603 scopus 로고    scopus 로고
    • Graph-based visual saliency
    • J. Harel, C. Koch, and P. Perona. Graph-based visual saliency. In NIPS, pages 545-552, 2006.
    • (2006) NIPS , pp. 545-552
    • Harel, J.1    Koch, C.2    Perona, P.3
  • 11
    • 35148814949 scopus 로고    scopus 로고
    • Saliency detection: A spectral residual approach
    • X. Hou and L. Zhang. Saliency detection: A spectral residual approach. In CVPR, 2007.
    • (2007) CVPR
    • Hou, X.1    Zhang, L.2
  • 12
    • 4544260101 scopus 로고    scopus 로고
    • Automatic foveation for video compression using a neurobiological model of visual attention
    • L. Itti. Automatic foveation for video compression using a neurobiological model of visual attention. IEEE T. IP, 13(10):1304-1318, 2004.
    • (2004) IEEE T. IP , vol.13 , Issue.10 , pp. 1304-1318
    • Itti, L.1
  • 13
    • 0032204063 scopus 로고    scopus 로고
    • A model of saliency-based visual attention for rapid scene analysis
    • L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. IEEE T. PAMI, 20(11):1254-1259, 1998.
    • (1998) IEEE T. PAMI , vol.20 , Issue.11 , pp. 1254-1259
    • Itti, L.1    Koch, C.2    Niebur, E.3
  • 14
    • 84898491541 scopus 로고    scopus 로고
    • Automatic salient object segmentation based on context and shape prior
    • H. Jiang, J. Wang, Z. Yuan, T. Liu, N. Zheng, and S. Li. Automatic salient object segmentation based on context and shape prior. In BMVC, 2011.
    • (2011) BMVC
    • Jiang, H.1    Wang, J.2    Yuan, Z.3    Liu, T.4    Zheng, N.5    Li, S.6
  • 15
    • 84887349150 scopus 로고    scopus 로고
    • Submodular salient region detection
    • Z. Jiang and L. S. Davis. Submodular salient region detection. In CVPR, 2013.
    • (2013) CVPR
    • Jiang, Z.1    Davis, L.S.2
  • 17
    • 84856636112 scopus 로고    scopus 로고
    • Distributed cosegmentation via submodular optimization on anisotropic diffusion
    • G. Kim, E. P. Xing, L. Fei-Fei, and T. Kanade. Distributed cosegmentation via submodular optimization on anisotropic diffusion. In ICCV, 2011.
    • (2011) ICCV
    • Kim, G.1    Xing, E.P.2    Fei-Fei, L.3    Kanade, T.4
  • 18
    • 33751255054 scopus 로고    scopus 로고
    • Object-of-interest image segmentation based on human attention and semantic region clustering
    • B. C. Ko and J.-Y. Nam. Object-of-interest image segmentation based on human attention and semantic region clustering. JOSA A, 23(10):2462-2470, 2006.
    • (2006) JOSA A , vol.23 , Issue.10 , pp. 2462-2470
    • Ko, B.C.1    Nam, J.-Y.2
  • 19
    • 0742286180 scopus 로고    scopus 로고
    • What energy functions can be minimized via graph cuts?
    • V. Kolmogorov and R. Zabin. What energy functions can be minimized via graph cuts? IEEE T. PAMI, 26(2):147-159, 2004.
    • (2004) IEEE T. PAMI , vol.26 , Issue.2 , pp. 147-159
    • Kolmogorov, V.1    Zabin, R.2
  • 21
    • 84856631736 scopus 로고    scopus 로고
    • Beyond convexity: Submodularity in machine learning
    • A. Krause and C. Guestrin. Beyond convexity: Submodularity in machine learning. In ICML Tutorials, 2008.
    • (2008) ICML Tutorials
    • Krause, A.1    Guestrin, C.2
  • 22
    • 84863124316 scopus 로고    scopus 로고
    • Saliency detection by multitask sparsity pursuit
    • C. Lang, G. Liu, J. Yu, and S. Yan. Saliency detection by multitask sparsity pursuit. IEEE T. IP, 21(3):1327-1338, 2012.
    • (2012) IEEE T. IP , vol.21 , Issue.3 , pp. 1327-1338
    • Lang, C.1    Liu, G.2    Yu, J.3    Yan, S.4
  • 24
    • 84886382107 scopus 로고    scopus 로고
    • Learning PDEs for image restoration via optimal control
    • R. Liu, Z. Lin, W. Zhang, and Z. Su. Learning PDEs for image restoration via optimal control. In ECCV, 2010.
    • (2010) ECCV
    • Liu, R.1    Lin, Z.2    Zhang, W.3    Su, Z.4
  • 25
    • 84886409485 scopus 로고    scopus 로고
    • Toward designing intelligent PDEs for computer vision: An optimal control approachn
    • R. Liu, Z. Lin, W. Zhang, K. Tang, and Z. Su. Toward designing intelligent PDEs for computer vision: An optimal control approachn. Image and Vision Computing, 31(1):43-56, 2013.
    • (2013) Image and Vision Computing , vol.31 , Issue.1 , pp. 43-56
    • Liu, R.1    Lin, Z.2    Zhang, W.3    Tang, K.4    Su, Z.5
  • 27
    • 2342589340 scopus 로고    scopus 로고
    • Contrast-based image attention analysis by using fuzzy growing
    • Y.-F. Ma and H.-J. Zhang. Contrast-based image attention analysis by using fuzzy growing. In ACM Multimedia, 2003.
    • (2003) ACM Multimedia
    • Ma, Y.-F.1    Zhang, H.-J.2
  • 28
    • 77956554206 scopus 로고    scopus 로고
    • Design and perceptual validation of performance measures for salient object segmentation
    • V. Movahedi and J. H. Elder. Design and perceptual validation of performance measures for salient object segmentation. In CVPR Workshops, 2010.
    • (2010) CVPR Workshops
    • Movahedi, V.1    Elder, J.H.2
  • 29
    • 0010814278 scopus 로고
    • Best algorithms for approximating the maximum of a submodular set function
    • G. L. Nemhauser and L. A. Wolsey. Best algorithms for approximating the maximum of a submodular set function. Mathematics of Operations Research, 3(3):177-188, 1978.
    • (1978) Mathematics of Operations Research , vol.3 , Issue.3 , pp. 177-188
    • Nemhauser, G.L.1    Wolsey, L.A.2
  • 30
    • 84866667038 scopus 로고    scopus 로고
    • Saliency filters: Contrast based filtering for salient region detection
    • F. Perazzi, P. Krahenbuhl, Y. Pritch, and A. Hornung. Saliency filters: Contrast based filtering for salient region detection. In CVPR, 2012.
    • (2012) CVPR
    • Perazzi, F.1    Krahenbuhl, P.2    Pritch, Y.3    Hornung, A.4
  • 31
    • 84877632511 scopus 로고    scopus 로고
    • Grabcut: Interactive foreground extraction using iterated graph cuts
    • C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interactive foreground extraction using iterated graph cuts. In SIGGRAPH, 2004.
    • (2004) SIGGRAPH
    • Rother, C.1    Kolmogorov, V.2    Blake, A.3
  • 32
    • 5044223783 scopus 로고    scopus 로고
    • Is bottom-up attention useful for object recognition?
    • U. Rutishauser, D. Walther, C. Koch, and P. Perona. Is bottom-up attention useful for object recognition? In CVPR, 2004.
    • (2004) CVPR
    • Rutishauser, U.1    Walther, D.2    Koch, C.3    Perona, P.4
  • 33
    • 77950364024 scopus 로고    scopus 로고
    • Static and space-time visual saliency detection by self-resemblance
    • H. J. Seo and P. Milanfar. Static and space-time visual saliency detection by self-resemblance. Journal of vision, 9(12), 2009.
    • (2009) Journal of Vision , vol.9 , Issue.12
    • Seo, H.J.1    Milanfar, P.2
  • 34
    • 84866672748 scopus 로고    scopus 로고
    • A unified approach to salient object detection via low rank matrix recovery
    • X. Shen and Y. Wu. A unified approach to salient object detection via low rank matrix recovery. In CVPR, 2012.
    • (2012) CVPR
    • Shen, X.1    Wu, Y.2
  • 35
    • 33644829971 scopus 로고    scopus 로고
    • Boosting color saliency in image feature detection
    • J. Van De Weijer, T. Gevers, and A. D. Bagdanov. Boosting color saliency in image feature detection. IEEE T. PAMI, 28(1):150-156, 2006.
    • (2006) IEEE T. PAMI , vol.28 , Issue.1 , pp. 150-156
    • Weijer De J.Van1    Gevers, T.2    Bagdanov, A.D.3
  • 36
    • 84887344857 scopus 로고    scopus 로고
    • Geodesic saliency using background priors
    • Y. Wei, F. Wen, W. Zhu, and J. Sun. Geodesic saliency using background priors. In ECCV. 2012.
    • (2012) ECCV
    • Wei, Y.1    Wen, F.2    Zhu, W.3    Sun, J.4
  • 38
    • 84889245941 scopus 로고    scopus 로고
    • Bayesian saliency via low and mid level cues
    • Y. Xie, H. Lu, and M.-H. Yang. Bayesian saliency via low and mid level cues. IEEE T. IP, 22(5):1689-1698, 2013.
    • (2013) IEEE T. IP , vol.22 , Issue.5 , pp. 1689-1698
    • Xie, Y.1    Lu, H.2    Yang, M.-H.3
  • 39
    • 84887357058 scopus 로고    scopus 로고
    • Saliency detection via graph-based manifold ranking
    • C. Yang, L. Zhang, H. Lu, X. Ruan, and M.-H. Yang. Saliency detection via graph-based manifold ranking. In CVPR, 2013.
    • (2013) CVPR
    • Yang, C.1    Zhang, L.2    Lu, H.3    Ruan, X.4    Yang, M.-H.5
  • 40
    • 84866692148 scopus 로고    scopus 로고
    • Top-down visual saliency via joint CRF and dictionary learning
    • J. Yang and M.-H. Yang. Top-down visual saliency via joint CRF and dictionary learning. In CVPR, 2012.
    • (2012) CVPR
    • Yang, J.1    Yang, M.-H.2
  • 41
    • 34547210110 scopus 로고    scopus 로고
    • Visual attention detection in video sequences using spatiotemporal cues
    • Y. Zhai and M. Shah. Visual attention detection in video sequences using spatiotemporal cues. In ACM Multimedia, 2006.
    • (2006) ACM Multimedia
    • Zhai, Y.1    Shah, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.