메뉴 건너뛰기




Volumn , Issue , 2011, Pages 169-176

Distributed cosegmentation via submodular optimization on anisotropic diffusion

Author keywords

[No Author keywords available]

Indexed keywords

ANISOTROPIC DIFFUSION; CONSTANT FACTOR APPROXIMATION; DATA SETS; GREEDY ALGORITHMS; HEAT DIFFUSIONS; HEAT SOURCES; IMAGE COLLECTIONS; MULTIPLE IMAGE; OPTIMAL SOLUTIONS; SUBMODULAR; SUBMODULAR FUNCTIONS;

EID: 84856636112     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2011.6126239     Document Type: Conference Paper
Times cited : (290)

References (20)
  • 1
    • 77955985702 scopus 로고    scopus 로고
    • ICoseg: Interactive co-segmentation with intelligent scribble guidance
    • 1
    • D. Batra, A. Kowdle, D. Parikh, J. Luo, and T. Chen. iCoseg: Interactive Co-segmentation with Intelligent Scribble Guidance. In CVPR, 2010. 1
    • (2010) CVPR
    • Batra, D.1    Kowdle, A.2    Parikh, D.3    Luo, J.4    Chen, T.5
  • 2
    • 6944257066 scopus 로고    scopus 로고
    • Lucas/Kanade meets horn/Schunck: Combining local and global optic flow methods
    • 2
    • A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods. IJCV, 61(3):211-231, 2005. 2
    • (2005) IJCV , vol.61 , Issue.3 , pp. 211-231
    • Bruhn, A.1    Weickert, J.2    Schnörr, C.3
  • 3
    • 24644435537 scopus 로고    scopus 로고
    • Spectral segmentation with multiscale graph decomposition
    • 7
    • T. Cour, F. Benezit, and J. Shi. Spectral Segmentation with Multiscale Graph Decomposition. In CVPR, 2005. 7
    • (2005) CVPR
    • Cour, T.1    Benezit, F.2    Shi, J.3
  • 4
    • 85198028989 scopus 로고    scopus 로고
    • ImageNet: A large-scale hierarchical image database
    • 7
    • J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR, 2009. 1, 2, 7
    • (2009) CVPR , vol.1 , Issue.2
    • Deng, J.1    Dong, W.2    Socher, R.3    Li, L.-J.4    Li, K.5    Fei-Fei, L.6
  • 5
    • 33846207510 scopus 로고    scopus 로고
    • Random walks for image segmentation
    • 3, 5
    • L. Grady. Random Walks for Image Segmentation. IEEE PAMI, 28:1768-1783, 2006. 3, 5
    • (2006) IEEE PAMI , vol.28 , pp. 1768-1783
    • Grady, L.1
  • 6
    • 77953213168 scopus 로고    scopus 로고
    • An efficient algorithm for cosegmentation
    • 1, 2, 6, 7
    • D. S. Hochbaum and V. Singh. An Efficient Algorithm for Cosegmentation. In ICCV, 2009. 1, 2, 6, 7
    • (2009) ICCV
    • Hochbaum, D.S.1    Singh, V.2
  • 7
    • 77955990943 scopus 로고    scopus 로고
    • Discriminative Clustering for Image co-segmentation
    • 1, 2, 6, 7
    • A. Joulin, F. Bach, and J. Ponce. Discriminative Clustering for Image co-segmentation. In CVPR, 2010. 1, 2, 6, 7
    • (2010) CVPR
    • Joulin, A.1    Bach, F.2    Ponce, J.3
  • 8
    • 84856631736 scopus 로고    scopus 로고
    • Beyond convexity: Submodularity in machine learning
    • 2, 3
    • A. Krause and C. Guestrin. Beyond Convexity: Submodularity in Machine Learning. In ICML Tutorials, 2008. 2, 3
    • (2008) ICML Tutorials
    • Krause, A.1    Guestrin, C.2
  • 11
    • 80052910929 scopus 로고    scopus 로고
    • Scale invariant cosegmentation for image groups
    • 2
    • L. Mukherjee, V. Singh, and J. Peng. Scale Invariant Cosegmentation for Image Groups. In CVPR, 2011. 2
    • (2011) CVPR
    • Mukherjee, L.1    Singh, V.2    Peng, J.3
  • 12
    • 0000095809 scopus 로고
    • An analysis of approximations for maximizing submodular set functions
    • 3
    • G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An Analysis of Approximations for Maximizing Submodular Set Functions. Math. Prog., 14:265-294, 1978. 3
    • (1978) Math. Prog , vol.14 , pp. 265-294
    • Nemhauser, G.L.1    Wolsey, L.A.2    Fisher, M.L.3
  • 13
    • 33845587625 scopus 로고    scopus 로고
    • Cosegmentation of image pairs by histogram matching incorporating a global constraint into MRFs
    • 1, 2
    • C. Rother, T. Minka, A. Blake, and V. Kolmogorov. Cosegmentation of Image Pairs by Histogram Matching Incorporating a Global Constraint into MRFs. In CVPR, 2006. 1, 2
    • (2006) CVPR
    • Rother, C.1    Minka, T.2    Blake, A.3    Kolmogorov, V.4
  • 14
    • 33845596932 scopus 로고    scopus 로고
    • Using multiple segmentations to discover objects and their extent in image collections
    • 7
    • B. Russell, A. Efros, J. Sivic, W. T. Freeman, and A. Zisserman. Using Multiple Segmentations to Discover Objects and their Extent in Image Collections. In CVPR, 2006. 7
    • (2006) CVPR
    • Russell, B.1    Efros, A.2    Sivic, J.3    Freeman, W.T.4    Zisserman, A.5
  • 15
    • 80051736089 scopus 로고    scopus 로고
    • Cosegmentation revisited: Modes and optimization
    • 1, 2
    • S. Vicente, V. Kolmogorov, and C. Rother. Cosegmentation Revisited: Modes and Optimization. In ECCV, 2010. 1, 2
    • (2010) ECCV
    • Vicente, S.1    Kolmogorov, V.2    Rother, C.3
  • 17
    • 33745913325 scopus 로고    scopus 로고
    • Object categorization by learned universal visual dictionary
    • 1 2, 6
    • J. Winn, A. Criminisi, and T. Minka. Object Categorization by Learned Universal Visual Dictionary. In ICCV, 2005. 1, 2, 6
    • (2005) ICCV
    • Winn, J.1    Criminisi, A.2    Minka, T.3
  • 18
    • 77955986351 scopus 로고    scopus 로고
    • A diffusion approach to seeded image segmentation
    • 2, 3
    • J. Zhang, J. Zheng, and J. Cai. A Diffusion Approach to Seeded Image Segmentation. In CVPR, 2010. 2, 3
    • (2010) CVPR
    • Zhang, J.1    Zheng, J.2    Cai, J.3
  • 20
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using gaussian fields and harmonic functions
    • 3
    • X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions. In ICML, 2003. 3
    • (2003) ICML
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.