-
1
-
-
84870749286
-
-
Apache Mahout. http://mahout.apache.org/.
-
Apache Mahout
-
-
-
3
-
-
84858012279
-
Scalable inference in latent variable models
-
New York, NY, USA, ACM
-
A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy, and A. J. Smola. Scalable inference in latent variable models. In WSDM'12: Proceedings of the fifth ACM international conference on Web search and data mining, pages 123-132, New York, NY, USA, 2012. ACM.
-
(2012)
WSDM'12: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining
, pp. 123-132
-
-
Ahmed, A.1
Aly, M.2
Gonzalez, J.3
Narayanamurthy, S.4
Smola, A.J.5
-
4
-
-
79960166230
-
Reining in the outliers in map-reduce clusters using mantri
-
Berkeley, CA, USA, USENIX Association
-
G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha, and E. Harris. Reining in the outliers in map-reduce clusters using mantri. In Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation, OSDI'10, pages 1-16, Berkeley, CA, USA, 2010. USENIX Association.
-
(2010)
Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation, OSDI'10
, pp. 1-16
-
-
Ananthanarayanan, G.1
Kandula, S.2
Greenberg, A.3
Stoica, I.4
Lu, Y.5
Saha, B.6
Harris, E.7
-
5
-
-
85076690211
-
Effective straggler mitigation: Attack of the clones
-
Lombard, IL, USENIX
-
G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica. Effective straggler mitigation: Attack of the clones. In Presented as part of the 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI 13), pages 185-198, Lombard, IL, 2013. USENIX.
-
(2013)
Presented as Part of the 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI 13)
, pp. 185-198
-
-
Ananthanarayanan, G.1
Ghodsi, A.2
Shenker, S.3
Stoica, I.4
-
6
-
-
39449104740
-
Pattern recognition and machine learning
-
Springer-Verlag New York, Inc. Secaucus, NJ, USA
-
C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.
-
(2006)
Information Science and Statistics
-
-
Bishop, C.M.1
-
7
-
-
80053451705
-
Parallel coordinate descent for l1-regularized loss minimization
-
Bellevue, Washington, June
-
J. K. Bradley, A. Kyrola, D. Bickson, and C. Guestrin. Parallel coordinate descent for l1-regularized loss minimization. In International Conference on Machine Learning (ICML 2011), Bellevue, Washington, June 2011.
-
(2011)
International Conference on Machine Learning (ICML 2011)
-
-
Bradley, J.K.1
Kyrola, A.2
Bickson, D.3
Guestrin, C.4
-
8
-
-
85069497682
-
Project adam: Building an efficient and scalable deep learning training system
-
Broomfield, CO, Oct. USENIX Association
-
T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman. Project adam: Building an efficient and scalable deep learning training system. In 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14), pages 571-582, Broomfield, CO, Oct. 2014. USENIX Association.
-
(2014)
11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14)
, pp. 571-582
-
-
Chilimbi, T.1
Suzue, Y.2
Apacible, J.3
Kalyanaraman, K.4
-
9
-
-
85092764449
-
Solving the straggler problem with bounded staleness
-
Berkeley, CA, USENIX
-
J. Cipar, Q. Ho, J. K. Kim, S. Lee, G. R. Ganger, G. Gibson, K. Keeton, and E. Xing. Solving the straggler problem with bounded staleness. In Presented as part of the 14th Workshop on Hot Topics in Operating Systems, Berkeley, CA, 2013. USENIX.
-
(2013)
Presented as Part of the 14th Workshop on Hot Topics in Operating Systems
-
-
Cipar, J.1
Ho, Q.2
Kim, J.K.3
Lee, S.4
Ganger, G.R.5
Gibson, G.6
Keeton, K.7
Xing, E.8
-
10
-
-
85077475089
-
Exploiting bounded staleness to speed up big data analytics
-
Philadelphia, PA, June, USENIX Association
-
H. Cui, J. Cipar, Q. Ho, J. K. Kim, S. Lee, A. Kumar, J. Wei, W. Dai, G. R. Ganger, P. B. Gibbons, G. A. Gibson, and E. P. Xing. Exploiting bounded staleness to speed up big data analytics. In 2014 USENIX Annual Technical Conference (USENIX ATC 14), pages 37-48, Philadelphia, PA, June 2014. USENIX Association.
-
(2014)
2014 USENIX Annual Technical Conference (USENIX ATC 14)
, pp. 37-48
-
-
Cui, H.1
Cipar, J.2
Ho, Q.3
Kim, J.K.4
Lee, S.5
Kumar, A.6
Wei, J.7
Dai, W.8
Ganger, G.R.9
Gibbons, P.B.10
Gibson, G.A.11
Xing, E.P.12
-
11
-
-
85118315826
-
Exploiting iterative-ness for parallel ml computations
-
pages 5:1-5:14, New York, NY, USA, ACM
-
H. Cui, A. Tumanov, J. Wei, L. Xu, W. Dai, J. Haber-Kucharsky, Q. Ho, G. R. Ganger, P. B. Gibbons, G. A. Gibson, and E. P. Xing. Exploiting iterative-ness for parallel ml computations. In Proceedings of the ACM Symposium on Cloud Computing, SOCC'14, pages 5:1-5:14, New York, NY, USA, 2014. ACM.
-
(2014)
Proceedings of the ACM Symposium on Cloud Computing, SOCC'14
-
-
Cui, H.1
Tumanov, A.2
Wei, J.3
Xu, L.4
Dai, W.5
Kucharsky, J.H.-6
Ho, Q.7
Ganger, G.R.8
Gibbons, P.B.9
Gibson, G.A.10
Xing, E.P.11
-
12
-
-
84959524143
-
High-performance distributed ml at scale through parameter server consistency models
-
January 25-30, Austin, Texas, USA
-
W. Dai, A. Kumar, J. Wei, Q. Ho, G. A. Gibson, and E. P. Xing. High-performance distributed ML at scale through parameter server consistency models. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA., pages 79-87, 2015.
-
(2015)
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence
, pp. 79-87
-
-
Dai, W.1
Kumar, A.2
Wei, J.3
Ho, Q.4
Gibson, G.A.5
Xing, E.P.6
-
13
-
-
84877760312
-
Large scale distributed deep networks
-
Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States
-
J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato, A. W. Senior, P. A. Tucker, K. Yang, and A. Y. Ng. Large scale distributed deep networks. In Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States., pages 1232-1240, 2012.
-
(2012)
Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012
, pp. 1232-1240
-
-
Dean, J.1
Corrado, G.2
Monga, R.3
Chen, K.4
Devin, M.5
Le, Q.V.6
Mao, M.Z.7
Ranzato, M.A.8
Tucker, P.A.9
Yang, K.10
Ng, A.Y.11
-
14
-
-
77950537175
-
Regularization paths for generalized linear models via coordinate descent
-
J. H. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1):1-22, 2010.
-
(2010)
Journal of Statistical Software
, vol.33
, Issue.1
, pp. 1-22
-
-
Friedman, J.H.1
Hastie, T.2
Tibshirani, R.3
-
15
-
-
80052668032
-
Largescale matrix factorization with distributed stochastic gradient descent
-
New York, NY, USA, ACM
-
R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Largescale matrix factorization with distributed stochastic gradient descent. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD'11, pages 69-77, New York, NY, USA, 2011. ACM. .
-
(2011)
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD'11
, pp. 69-77
-
-
Gemulla, R.1
Nijkamp, E.2
Haas, P.J.3
Sismanis, Y.4
-
16
-
-
34548105186
-
Large-scale Bayesian logistic regression for text categorization
-
A. Genkin, D. D. Lewis, and D. Madigan. Large-scale bayesian logistic regression for text categorization. Technometrics, page 2007.
-
Technometrics
-
-
Genkin, A.1
Lewis, D.D.2
Madigan, D.3
-
19
-
-
85072980230
-
Powergraph: Distributed graph-parallel computation on natural graphs
-
Hollywood, CA, USENIX
-
J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Powergraph: Distributed graph-parallel computation on natural graphs. In Presented as part of the 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI 12), pages 17-30, Hollywood, CA, 2012. USENIX.
-
(2012)
Presented as Part of the 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI 12)
, pp. 17-30
-
-
Gonzalez, J.E.1
Low, Y.2
Gu, H.3
Bickson, D.4
Guestrin, C.5
-
20
-
-
1842788824
-
Finding scientific topics
-
T. L. Griffiths and M. Steyvers. Finding scientific topics. PNAS, 101(suppl. 1):5228-5235, 2004.
-
(2004)
PNAS
, vol.101
, pp. 5228-5235
-
-
Griffiths, T.L.1
Steyvers, M.2
-
21
-
-
84898988368
-
More effective distributed ml via a stale synchronous parallel parameter server
-
C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger, editors, Curran Associates, Inc
-
Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson, G. Ganger, and E. P. Xing. More effective distributed ml via a stale synchronous parallel parameter server. In C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger, editors, Advances in Neural Information Processing Systems 26, pages 1223-1231. Curran Associates, Inc., 2013.
-
(2013)
Advances in Neural Information Processing Systems
, vol.26
, pp. 1223-1231
-
-
Ho, Q.1
Cipar, J.2
Cui, H.3
Lee, S.4
Kim, J.K.5
Gibbons, P.B.6
Gibson, G.A.7
Ganger, G.8
Xing, E.P.9
-
22
-
-
85008044987
-
Matrix factorization techniques for recommender systems
-
Aug
-
Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 42(8):30-37, Aug. 2009.
-
(2009)
Computer
, vol.42
, Issue.8
, pp. 30-37
-
-
Koren, Y.1
Bell, R.2
Volinsky, C.3
-
23
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
F. Pereira, C. Burges, L. Bottou, and K. Weinberger, editors, Curran Associates, Inc
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In F. Pereira, C. Burges, L. Bottou, and K. Weinberger, editors Advances in Neural Information Processing Systems 25, pages 1097-1105. Curran Associates, Inc., 2012.
-
(2012)
Advances in Neural Information Processing Systems
, vol.25
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
24
-
-
84937912100
-
Scaling distributed machine learning with the parameter serve
-
Broomfield, CO, Oct. USENIX Association
-
M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling distributed machine learning with the parameter server. In 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14), pages 583-598, Broomfield, CO, Oct. 2014. USENIX Association.
-
(2014)
11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14)
, pp. 583-598
-
-
Li, M.1
Andersen, D.G.2
Park, J.W.3
Smola, A.J.4
Ahmed, A.5
Josifovski, V.6
Long, J.7
Shekita, E.J.8
Su, B.-Y.9
-
25
-
-
70350663114
-
Large-scale sparse logistic regression
-
New York, NY, USA, ACM
-
J. Liu, J. Chen, and J. Ye. Large-scale sparse logistic regression. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD'09, pages 547-556, New York, NY, USA, 2009. ACM.
-
(2009)
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD'09
, pp. 547-556
-
-
Liu, J.1
Chen, J.2
Ye, J.3
-
26
-
-
84863735533
-
Distributed graphlab: A framework for machine learning and data mining in the cloud
-
Apr
-
Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein. Distributed graphlab: A framework for machine learning and data mining in the cloud. Proc. VLDB Endow., 5(8):716-727, Apr. 2012.
-
(2012)
Proc. VLDB Endow
, vol.5
, Issue.8
, pp. 716-727
-
-
Low, Y.1
Bickson, D.2
Gonzalez, J.3
Guestrin, C.4
Kyrola, A.5
Hellerstein, J.M.6
-
27
-
-
77954723629
-
Pregel: A system for large-scale graph processing
-
New York, NY, USA, ACM
-
G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski. Pregel: A system for large-scale graph processing. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, SIGMOD'10, pages 135-146, New York, NY, USA, 2010. ACM.
-
(2010)
Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, SIGMOD'10
, pp. 135-146
-
-
Malewicz, G.1
Austern, M.H.2
Bik, A.J.3
Dehnert, J.C.4
Horn, I.5
Leiser, N.6
Czajkowski, G.7
-
29
-
-
85022224234
-
Ad click prediction: A view from the trenches
-
H. B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner, J. Grady, L. Nie, T. Phillips, E. Davydov, D. Golovin, S. Chikkerur, D. Liu, M. Wattenberg, A. M. Hrafnkelsson, T. Boulos, and J. Kubica. Ad click prediction: A view from the trenches. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2013.
-
(2013)
Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)
-
-
McMahan, H.B.1
Holt, G.2
Sculley, D.3
Young, M.4
Ebner, D.5
Grady, J.6
Nie, L.7
Phillips, T.8
Davydov, E.9
Golovin, D.10
Chikkerur, S.11
Liu, D.12
Wattenberg, M.13
Hrafnkelsson, A.M.14
Boulos, T.15
Kubica, J.16
-
30
-
-
84889658377
-
Naiad: A timely dataflow system
-
New York, NY, USA, ACM
-
D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. Naiad: A timely dataflow system. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP'13, pages 439-455, New York, NY, USA, 2013. ACM.
-
(2013)
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP'13
, pp. 439-455
-
-
Murray, D.G.1
McSherry, F.2
Isaacs, R.3
Isard, M.4
Barham, P.5
Abadi, M.6
-
31
-
-
84862798988
-
Building fast, distributed programs with partitioned tables
-
OSDI'10, Berkeley, CA, USA, USENIX Association
-
R. Power and J. Li. Piccolo: Building fast, distributed programs with partitioned tables. In Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation, OSDI'10, pages 1-14, Berkeley, CA, USA, 2010. USENIX Association.
-
(2010)
Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation
, pp. 1-14
-
-
Power, R.1
Piccolo, J.Li.2
-
32
-
-
0025467711
-
A bridging model for parallel computation
-
Aug
-
L. G. Valiant. A bridging model for parallel computation. Commun. ACM, 33(8):103-111, Aug. 1990.
-
(1990)
Commun, ACM
, vol.33
, Issue.8
, pp. 103-111
-
-
Valiant, L.G.1
-
33
-
-
70350681184
-
Efficient methods for topic model inference on streaming document collections
-
KDD'09, New York, NY, USA, ACM
-
L. Yao, D. Mimno, and A. McCallum. Efficient methods for topic model inference on streaming document collections. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD'09, pages 937-946, New York, NY, USA, 2009. ACM.
-
(2009)
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 937-946
-
-
Yao, L.1
Mimno, D.2
McCallum, A.3
-
34
-
-
84976846528
-
A first order approximation to the optimum checkpoint interval
-
Sept
-
J. W. Young. A first order approximation to the optimum checkpoint interval. Commun. ACM, 17(9):530-531, Sept. 1974.
-
(1974)
Commun. ACM
, vol.17
, Issue.9
, pp. 530-531
-
-
Young, J.W.1
-
35
-
-
79960300637
-
Feature engineering and classifier ensemble for kdd cup 2010
-
H.-F. Yu, H.-Y. Lo, H.-P. Hsieh, J.-K. Lou, T. G. McKenzie, J.-W. Chou, P.-H. Chung, C.-H. Ho, Y.-H. Chang, Chun-Fu an d Wei, et al. Feature engineering and classifier ensemble for kdd cup 2010. KDD Cup, 2010.
-
(2010)
KDD Cup
-
-
Yu, H.-F.1
Lo, H.-Y.2
Hsieh, H.-P.3
Lou, J.-K.4
McKenzie, T.G.5
Chou, J.-W.6
Chung, P.-H.7
Ho, C.-H.8
Chang, Y.-H.9
Wei, C.-F.A.D.10
-
36
-
-
80052488062
-
Slow learners are fast
-
Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta, editors, Curran Associates, Inc
-
M. Zinkevich, J. Langford, and A. J. Smola. Slow learners are fast. In Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 2331-2339. Curran Associates, Inc., 2009.
-
(2009)
Advances in Neural Information Processing Systems
, vol.22
, pp. 2331-2339
-
-
Zinkevich, M.1
Langford, J.2
Smola, A.J.3
|