-
1
-
-
84858012279
-
Scalable inference in latent variable models
-
Ahmed, A.; Aly, M.; Gonzalez, J.; Narayanamurthy, S.; and Smola, A. J. 2012. Scalable inference in latent variable models. In WSDM, 123-132.
-
(2012)
WSDM
, pp. 123-132
-
-
Ahmed, A.1
Aly, M.2
Gonzalez, J.3
Narayanamurthy, S.4
Smola, A.J.5
-
2
-
-
70450136675
-
The hadoop distributed file system: Architecture and design
-
Borthakur, D. 2007. The hadoop distributed file system: Architecture and design. Hadoop Project Website 11:21.
-
(2007)
Hadoop Project Website
, vol.11
, pp. 21
-
-
Borthakur, D.1
-
3
-
-
85069497682
-
Project adam: Building an efficient and scalable deep learning training system
-
Broomfield, CO: USENIX Association
-
Chilimbi, T.; Suzue, Y.; Apacible, J.; and Kalyanaraman, K. 2014. Project adam: Building an efficient and scalable deep learning training system. In 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI14), 571-582. Broomfield, CO: USENIX Association.
-
(2014)
11th USENIX Symposium on Operating Systems Design and Implementation (OSDI14)
, pp. 571-582
-
-
Chilimbi, T.1
Suzue, Y.2
Apacible, J.3
Kalyanaraman, K.4
-
4
-
-
85092764449
-
Solving the straggler problem with bounded staleness
-
Usenix
-
Cipar, J.; Ho, Q.; Kim, J. K.; Lee, S.; Ganger, G. R.; Gibson, G.; Keeton, K.; and Xing, E. 2013. Solving the straggler problem with bounded staleness. In HotOS '13. Usenix.
-
(2013)
HotOS '13
-
-
Cipar, J.1
Ho, Q.2
Kim, J.K.3
Lee, S.4
Ganger, G.R.5
Gibson, G.6
Keeton, K.7
Xing, E.8
-
5
-
-
85077475089
-
Exploiting bounded staleness to speed up big data analytics
-
Philadelphia, PA: USENIX Association
-
Cui, H.; Cipar, J.; Ho, Q.; Kim, J. K.; Lee, S.; Kumar, A.; Wei, J.; Dai, W.; Ganger, G. R.; Gibbons, P. B.; Gibson, G. A.; and Xing, E. P. 2014. Exploiting bounded staleness to speed up big data analytics. In 2014 USENIX Annual Technical Conference (USENIX ATC 14), 37-48. Philadelphia, PA: USENIX Association.
-
(2014)
2014 USENIX Annual Technical Conference (USENIX ATC 14)
, pp. 37-48
-
-
Cui, H.1
Cipar, J.2
Ho, Q.3
Kim, J.K.4
Lee, S.5
Kumar, A.6
Wei, J.7
Dai, W.8
Ganger, G.R.9
Gibbons, P.B.10
Gibson, G.A.11
Xing, E.P.12
-
6
-
-
84877760312
-
Large scale distributed deep networks
-
Dean, J.; Corrado, G.; Monga, R.; Chen, K.; Devin, M.; Le, Q.; Mao, M.; Ranzato, M.; Senior, A.; Tucker, P.; Yang, K.; and Ng, A. 2012. Large scale distributed deep networks. In NIPS 2012.
-
(2012)
NIPS 2012
-
-
Dean, J.1
Corrado, G.2
Monga, R.3
Chen, K.4
Devin, M.5
Le, Q.6
Mao, M.7
Ranzato, M.8
Senior, A.9
Tucker, P.10
Yang, K.11
Ng, A.12
-
7
-
-
80052668032
-
Large-scale matrix factorization with distributed stochastic gradient descent
-
ACM
-
Gemulla, R.; Nijkamp, E.; Haas, P. J.; and Sismanis, Y. 2011. Large-scale matrix factorization with distributed stochastic gradient descent. In KDD, 69-77. ACM.
-
(2011)
KDD
, pp. 69-77
-
-
Gemulla, R.1
Nijkamp, E.2
Haas, P.J.3
Sismanis, Y.4
-
8
-
-
84898988368
-
More effective distributed ml via a stale synchronous parallel parameter server
-
Ho, Q.; Cipar, J.; Cui, H.; Kim, J.-K.; Lee, S.; Gibbons, P. B.; Gibson, G.; Ganger, G. R.; and Xing, E. P. 2013. More effective distributed ml via a stale synchronous parallel parameter server. In NIPS.
-
(2013)
NIPS
-
-
Ho, Q.1
Cipar, J.2
Cui, H.3
Kim, J.-K.4
Lee, S.5
Gibbons, P.B.6
Gibson, G.7
Ganger, G.R.8
Xing, E.P.9
-
9
-
-
85008044987
-
Matrix factorization techniques for recom-mender systems
-
Koren, Y. 2009. Matrix factorization techniques for recom-mender systems. IEEE Computer 42(8):30-37.
-
(2009)
IEEE Computer
, vol.42
, Issue.8
, pp. 30-37
-
-
Koren, Y.1
-
10
-
-
84955497549
-
Fugue: Slow-worker-agnostic distributed learning for big models on big data
-
Kumar, A.; Beutel, A.; Ho, Q.; and Xing, E. P. 2014. Fugue: Slow-worker-agnostic distributed learning for big models on big data. In Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, 531-539.
-
(2014)
Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics
, pp. 531-539
-
-
Kumar, A.1
Beutel, A.2
Ho, Q.3
Xing, E.P.4
-
12
-
-
85026967145
-
Primitives for dynamic big model parallelism
-
Lee, S.; Kim, J. K.; Zheng, X.; Ho, Q.; Gibson, G. A.; and Xing, E. P. 2014. Primitives for dynamic big model parallelism. In Advances in Neural Information Processing Systems (NIPS).
-
(2014)
Advances in Neural Information Processing Systems (NIPS)
-
-
Lee, S.1
Kim, J.K.2
Zheng, X.3
Ho, Q.4
Gibson, G.A.5
Xing, E.P.6
-
13
-
-
84937960701
-
Parameter server for distributed machine learning
-
Li, M.; Yang, L. Z. Z.; Xia, A. L. F.; Andersen, D. G.; and Smola, A. 2013. Parameter server for distributed machine learning. NIPS workshop.
-
(2013)
NIPS Workshop
-
-
Li, M.1
Yang, L.Z.Z.2
Xia, A.L.F.3
Andersen, D.G.4
Smola, A.5
-
14
-
-
84937912100
-
Scaling distributed machine learning with the parameter server
-
Li, M.; Andersen, D. G.; Park, J. W.; Smola, A. J.; Ahmed, A.; Josifovski, V.; Long, J.; Shekita, E. J.; and Su, B.-Y. 2014. Scaling distributed machine learning with the parameter server. In Operating Systems Design and Implementation (OSDI).
-
(2014)
Operating Systems Design and Implementation (OSDI)
-
-
Li, M.1
Andersen, D.G.2
Park, J.W.3
Smola, A.J.4
Ahmed, A.5
Josifovski, V.6
Long, J.7
Shekita, E.J.8
Su, B.-Y.9
-
15
-
-
80053161467
-
Graphlab: A new parallel framework for machine learning
-
Low, Y; Gonzalez, J.; Kyrola, A.; Bickson, D.; Guestrin, C.; and Hellerstein, J. M. 2010. Graphlab: A new parallel framework for machine learning. In Conference on Uncertainty in Artificial Intelligence (UAI).
-
(2010)
Conference on Uncertainty in Artificial Intelligence (UAI)
-
-
Low, Y.1
Gonzalez, J.2
Kyrola, A.3
Bickson, D.4
Guestrin, C.5
Hellerstein, J.M.6
-
16
-
-
85162467517
-
Hogwild!: A lock-free approach to parallelizing stochastic gradient descent
-
Niu, F.; Recht, B.; Ré, G; and Wright, S. J. 2011. Hogwild!: A lock-free approach to parallelizing stochastic gradient descent. In NIPS.
-
(2011)
NIPS
-
-
Niu, F.1
Recht, B.2
Ré, G.3
Wright, S.J.4
-
17
-
-
70350637398
-
Pida: Parallel latent dirichlet allocation for large-scale applications
-
Berlin, Heidelberg: Springer-Verlag
-
Wang, Y; Bai, H.; Stanton, M.; Chen, W.-Y; and Chang, E. Y. 2009. Pida: Parallel latent dirichlet allocation for large-scale applications. In Proceedings of the 5th International Conference on Algorithmic Aspects in Information and Management, AAIM '09, 301-314. Berlin, Heidelberg: Springer-Verlag.
-
(2009)
Proceedings of the 5th International Conference on Algorithmic Aspects in Information and Management, AAIM '09
, pp. 301-314
-
-
Wang, Y.1
Bai, H.2
Stanton, M.3
Chen, W.-Y.4
Chang, E.Y.5
-
18
-
-
70350681184
-
Efficient methods for topic model inference on streaming document collections
-
New York, NY, USA: ACM
-
Yao, L.; Mimno, D.; and McCallum, A. 2009. Efficient methods for topic model inference on streaming document collections. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '09, 937-946. New York, NY, USA: ACM.
-
(2009)
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '09
, pp. 937-946
-
-
Yao, L.1
Mimno, D.2
McCallum, A.3
-
19
-
-
84874049380
-
Scalable coordinate descent approaches to parallel matrix factorization for recommender systems
-
Yu, H.-F; Hsieh, C.-J.; Si, S.; and Dhillon, I. S. 2012. Scalable coordinate descent approaches to parallel matrix factorization for recommender systems. In ICDM, 765-774.
-
(2012)
ICDM
, pp. 765-774
-
-
Yu, H.-F.1
Hsieh, C.-J.2
Si, S.3
Dhillon, I.S.4
-
20
-
-
85085251984
-
Spark: Cluster computing with working sets
-
University of California, Berkeley
-
Zaharia, M.; Chowdhury, N. M. M.; Franklin, M.; Shenker, S.; and Stoica, I. 2010. Spark: Cluster computing with working sets. Technical Report UCB/EECS-2010-53, EECS Department, University of California, Berkeley.
-
(2010)
Technical Report UCB/EECS-2010-53, EECS Department
-
-
Zaharia, M.1
Chowdhury, N.M.M.2
Franklin, M.3
Shenker, S.4
Stoica, I.5
|