-
1
-
-
34047118522
-
CRISPR provides acquired resistance against viruses in prokaryotes
-
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709-1712.
-
(2007)
Science
, vol.315
, pp. 1709-1712
-
-
Barrangou, R.1
Fremaux, C.2
Deveau, H.3
Richards, M.4
Boyaval, P.5
Moineau, S.6
Romero, D.A.7
Horvath, P.8
-
2
-
-
84915828062
-
Structural model of a CRISPR RNA-silencing complex reveals the RNA-target cleavage activity in Cmr4
-
Benda C, Ebert J, Scheltema RA, Schiller HB, Baumgärtner M, Bonneau F, Mann M, Conti E. 2014. Structural model of a CRISPR RNA-silencing complex reveals the RNA-target cleavage activity in Cmr4. Mol Cell 56: 43-54.
-
(2014)
Mol Cell
, vol.56
, pp. 43-54
-
-
Benda, C.1
Ebert, J.2
Scheltema, R.A.3
Schiller, H.B.4
Baumgärtner, M.5
Bonneau, F.6
Mann, M.7
Conti, E.8
-
3
-
-
23844505202
-
Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin
-
Bolotin A. 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151: 2551-2561.
-
(2005)
Microbiology
, vol.151
, pp. 2551-2561
-
-
Bolotin, A.1
-
4
-
-
49649114086
-
Small CRISPR RNAs guide antiviral defense in prokaryotes
-
Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJH, Snijders APL, Dickman MJ, Makarova KS, Koonin EV, van der Oost J. 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321: 960-964.
-
(2008)
Science
, vol.321
, pp. 960-964
-
-
Brouns, S.J.J.1
Jore, M.M.2
Lundgren, M.3
Westra, E.R.4
Slijkhuis, R.J.H.5
Snijders, A.P.L.6
Dickman, M.J.7
Makarova, K.S.8
Koonin, E.V.9
van der Oost, J.10
-
5
-
-
58049191229
-
Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes
-
Carte J, Wang R, Li H, Terns R, Terns M. 2008. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev 22: 3489-3496.
-
(2008)
Genes Dev
, vol.22
, pp. 3489-3496
-
-
Carte, J.1
Wang, R.2
Li, H.3
Terns, R.4
Terns, M.5
-
6
-
-
84863230373
-
Structure of the Cmr2 subunit of the CRISPR-Cas RNA silencing complex
-
Cocozaki AI, RamiaNF, ShaoY, Hale CR, Terns R, Terns M, Li H. 2012. Structure of the Cmr2 subunit of the CRISPR-Cas RNA silencing complex. Structure 20: 545-553.
-
(2012)
Structure
, vol.20
, pp. 545-553
-
-
Cocozaki, A.I.1
Ramia, N.F.2
Shao, Y.3
Hale, C.R.4
Terns, R.5
Terns, M.6
Li, H.7
-
7
-
-
79953250082
-
CRISPR RNA maturation by trans-encoded smallRNA and host factor RNase III
-
Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. 2011. CRISPR RNA maturation by trans-encoded smallRNA and host factor RNase III. Nature 471: 602-607.
-
(2011)
Nature
, vol.471
, pp. 602-607
-
-
Deltcheva, E.1
Chylinski, K.2
Sharma, C.M.3
Gonzales, K.4
Chao, Y.5
Pirzada, Z.A.6
Eckert, M.R.7
Vogel, J.8
Charpentier, E.9
-
8
-
-
84874195392
-
A novel interference mechanism by a Type IIIB CRISPR-Cmr module in Sulfolobus
-
Deng L, Garrett RA, Shah SA, Peng X, She Q. 2013. A novel interference mechanism by a Type IIIB CRISPR-Cmr module in Sulfolobus. Mol Microbiol 87: 1088-1099.
-
(2013)
Mol Microbiol
, vol.87
, pp. 1088-1099
-
-
Deng, L.1
Garrett, R.A.2
Shah, S.A.3
Peng, X.4
She, Q.5
-
9
-
-
78149261827
-
The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
-
Garneau JE, Dupuis M-È, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S. 2010. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468: 67-71.
-
(2010)
Nature
, vol.468
, pp. 67-71
-
-
Garneau, J.E.1
Dupuis, M.-È.2
Villion, M.3
Romero, D.A.4
Barrangou, R.5
Boyaval, P.6
Fremaux, C.7
Horvath, P.8
Magadán, A.H.9
Moineau, S.10
-
10
-
-
84924425467
-
CRISPR-Cas adaptive immune systems of the sulfolobales: Unravelling their complexity and diversity
-
Garrett R, Shah S, Erdmann S, Liu G, Mousaei M, León-Sobrino C, Peng W, Gudbergsdottir S, Deng L, Vestergaard G, et al. 2015. CRISPR-Cas adaptive immune systems of the sulfolobales: unravelling their complexity and diversity. Life (Basel) 5: 783-817.
-
(2015)
Life (Basel)
, vol.5
, pp. 783-817
-
-
Garrett, R.1
Shah, S.2
Erdmann, S.3
Liu, G.4
Mousaei, M.5
León-Sobrino, C.6
Peng, W.7
Gudbergsdottir, S.8
Deng, L.9
Vestergaard, G.10
-
11
-
-
84866859751
-
Cas9- crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
-
Gasiunas G, Barrangou R, Horvath P, Siksnys V. 2012. Cas9- crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci 109: E2579-E2586.
-
(2012)
Proc Natl Acad Sci
, vol.109
, pp. E2579-E2586
-
-
Gasiunas, G.1
Barrangou, R.2
Horvath, P.3
Siksnys, V.4
-
12
-
-
84908456823
-
Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting
-
GoldbergGW, JiangW, Bikard D, Marraffini LA. 2014. Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting. Nature 514: 633-637.
-
(2014)
Nature
, vol.514
, pp. 633-637
-
-
Goldberg, G.W.1
Jiang, W.2
Bikard, D.3
Marraffini, L.A.4
-
13
-
-
70449753811
-
RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex
-
Hale CR, Zhao P, Olson S, Duff MO, Graveley BR,Wells L, Terns R, Terns M. 2009. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139: 945-956.
-
(2009)
Cell
, vol.139
, pp. 945-956
-
-
Hale, C.R.1
Zhao, P.2
Olson, S.3
Duff, M.O.4
Graveley, B.R.5
Wells, L.6
Terns, R.7
Terns, M.8
-
14
-
-
84856792673
-
Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs
-
Hale CR, Majumdar S, Elmore J, Pfister N, Compton M, Olson S, Resch AM, Glover CVC III, Graveley BR, Terns R, et al. 2012. Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. Mol Cell 45: 292-302.
-
(2012)
Mol Cell
, vol.45
, pp. 292-302
-
-
Hale, C.R.1
Majumdar, S.2
Elmore, J.3
Pfister, N.4
Compton, M.5
Olson, S.6
Resch, A.M.7
Glover, C.V.C.8
Graveley, B.R.9
Terns, R.10
-
15
-
-
84908431900
-
Target RNA capture and cleavage by the CmrType III-B CRISPR-Cas effector complex
-
Hale CR, Cocozaki A, Li H, Terns R, Terns M. 2014. Target RNA capture and cleavage by the CmrType III-B CRISPR-Cas effector complex. Genes Dev 28: 2432-2443.
-
(2014)
Genes Dev
, vol.28
, pp. 2432-2443
-
-
Hale, C.R.1
Cocozaki, A.2
Li, H.3
Terns, R.4
Terns, M.5
-
16
-
-
84890935599
-
Genetic characterization of antiplasmid immunity through a Type IIIA CRISPR-Cas system
-
Hatoum-Aslan A, Maniv I, Samai P, Marraffini LA. 2014. Genetic characterization of antiplasmid immunity through a Type IIIA CRISPR-Cas system. J Bacteriol 196: 310-317.
-
(2014)
J Bacteriol
, vol.196
, pp. 310-317
-
-
Hatoum-Aslan, A.1
Maniv, I.2
Samai, P.3
Marraffini, L.A.4
-
17
-
-
0029963656
-
A simple method for 3′-labeling of RNA
-
Huang Z, Szostak JW. 1996. A simple method for 3′-labeling of RNA. Nucleic Acids Res 24: 4360-4361.
-
(1996)
Nucleic Acids Res
, vol.24
, pp. 4360-4361
-
-
Huang, Z.1
Szostak, J.W.2
-
18
-
-
0022522022
-
Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C
-
Huber R, Langworthy TA, König H, ThommM,Woese CR, Sleytr UB, Stetter KO. 1986. Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch Microbiol 144: 324-333.
-
(1986)
Arch Microbiol
, vol.144
, pp. 324-333
-
-
Huber, R.1
Langworthy, T.A.2
König, H.3
Thomm, M.4
Woese, C.R.5
Sleytr, U.B.6
Stetter, K.O.7
-
19
-
-
84946498330
-
A conserved structural chassis for mounting versatile CRISPR RNA-guided immune responses
-
Jackson RN, Wiedenheft B. 2015. A conserved structural chassis for mounting versatile CRISPR RNA-guided immune responses. Mol Cell 58: 722-728.
-
(2015)
Mol Cell
, vol.58
, pp. 722-728
-
-
Jackson, R.N.1
Wiedenheft, B.2
-
20
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816-821.
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
21
-
-
84930190097
-
Crystal structure of the Csm1 subunit of the Csm complex and its single- stranded DNA-specific nuclease activity
-
Jung T-Y, An Y, Park K-H, Lee M-H, Oh B-H,Woo E. 2015. Crystal structure of the Csm1 subunit of the Csm complex and its single- stranded DNA-specific nuclease activity. Structure 23: 782-790.
-
(2015)
Structure
, vol.23
, pp. 782-790
-
-
Jung, T.-Y.1
An, Y.2
Park, K.-H.3
Lee, M.-H.4
Oh, B.-H.5
Woo, E.6
-
22
-
-
79956157571
-
Evolution and classification of the CRISPR-Cas systems
-
Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, Horvath P, Moineau S, Mojica FJM, Wolf YI, Yakunin AF, et al. 2011. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9: 467-477.
-
(2011)
Nat Rev Microbiol
, vol.9
, pp. 467-477
-
-
Makarova, K.S.1
Haft, D.H.2
Barrangou, R.3
Brouns, S.J.J.4
Charpentier, E.5
Horvath, P.6
Moineau, S.7
Mojica, F.J.M.8
Wolf, Y.I.9
Yakunin, A.F.10
-
23
-
-
84868685897
-
Live virus-free or die: Coupling of antivirus immunity and programmed suicide or dormancy in prokaryotes
-
Makarova KS, Anantharaman V, Aravind L, Koonin EV. 2012. Live virus-free or die: coupling of antivirus immunity and programmed suicide or dormancy in prokaryotes. Biol Direct 7: 40.
-
(2012)
Biol Direct
, vol.7
, pp. 40
-
-
Makarova, K.S.1
Anantharaman, V.2
Aravind, L.3
Koonin, E.V.4
-
24
-
-
84944449180
-
An updated evolutionary classification of CRISPR-Cas systems
-
Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJJ, Charpentier E, Haft DH, et al. 2015. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13: 722-736.
-
(2015)
Nat Rev Microbiol
, vol.13
, pp. 722-736
-
-
Makarova, K.S.1
Wolf, Y.I.2
Alkhnbashi, O.S.3
Costa, F.4
Shah, S.A.5
Saunders, S.J.6
Barrangou, R.7
Brouns, S.J.J.8
Charpentier, E.9
Haft, D.H.10
-
25
-
-
75749118174
-
Self versus non-self discrimination during CRISPR RNA-directed immunity
-
Marraffini LA, Sontheimer EJ. 2010. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463: 568-571.
-
(2010)
Nature
, vol.463
, pp. 568-571
-
-
Marraffini, L.A.1
Sontheimer, E.J.2
-
26
-
-
16444385662
-
Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements
-
Mojica FJM, Díez-Villaseñor CS, García-Martínez J, Soria E. 2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60: 174-182.
-
(2005)
J Mol Evol
, vol.60
, pp. 174-182
-
-
Mojica, F.J.M.1
Díez-Villaseñor, C.S.2
García-Martínez, J.3
Soria, E.4
-
27
-
-
80052400382
-
Structural and biochemical analysis of nuclease domain of clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 3 (Cas3)
-
Mulepati S, Bailey S. 2011. Structural and biochemical analysis of nuclease domain of clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 3 (Cas3). J Biol Chem 286: 31896-31903.
-
(2011)
J Biol Chem
, vol.286
, pp. 31896-31903
-
-
Mulepati, S.1
Bailey, S.2
-
28
-
-
84881256166
-
In vitro reconstitution of an Escherichia coli RNA-guided immune system reveals unidirectional, ATP-dependent degradation of DNA target
-
Mulepati S, Bailey S. 2013. In vitro reconstitution of an Escherichia coli RNA-guided immune system reveals unidirectional, ATP-dependent degradation of DNA target. J Biol Chem 288: 22184-22192.
-
(2013)
J Biol Chem
, vol.288
, pp. 22184-22192
-
-
Mulepati, S.1
Bailey, S.2
-
29
-
-
84928925211
-
Crystal structure of the CRISPR-Cas RNA silencing Cmr complex bound to a target analog
-
Osawa T, Inanaga H, Sato C, Numata T. 2015. Crystal structure of the CRISPR-Cas RNA silencing Cmr complex bound to a target analog. Mol Cell 58: 418-430.
-
(2015)
Mol Cell
, vol.58
, pp. 418-430
-
-
Osawa, T.1
Inanaga, H.2
Sato, C.3
Numata, T.4
-
30
-
-
0029983371
-
T7 vectors with a modified T7lac promoter for expression of proteins in Escherichia coli
-
Peränen J, Rikkonen M, Hyvönen M, Kääriäinen L. 1996. T7 vectors with a modified T7lac promoter for expression of proteins in Escherichia coli. Anal Biochem 236: 371-373.
-
(1996)
Anal Biochem
, vol.236
, pp. 371-373
-
-
Peränen, J.1
Rikkonen, M.2
Hyvönen, M.3
Kääriäinen, L.4
-
31
-
-
15844390228
-
CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies
-
Pourcel C. 2005. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151: 653-663.
-
(2005)
Microbiology
, vol.151
, pp. 653-663
-
-
Pourcel, C.1
-
32
-
-
84915825854
-
Essential structural and functional roles of the Cmr4 subunit in RNA cleavage by the Cmr CRISPR-Cas complex
-
Ramia NF, Spilman M, Tang L, Shao Y, Elmore J, Hale C, Cocozaki A, Bhattacharya N, Terns R, Terns M, et al. 2014a. Essential structural and functional roles of the Cmr4 subunit in RNA cleavage by the Cmr CRISPR-Cas complex. Cell Rep 9: 1610-1617.
-
(2014)
Cell Rep
, vol.9
, pp. 1610-1617
-
-
Ramia, N.F.1
Spilman, M.2
Tang, L.3
Shao, Y.4
Elmore, J.5
Hale, C.6
Cocozaki, A.7
Bhattacharya, N.8
Terns, R.9
Terns, M.10
-
34
-
-
84885336337
-
Structure of the CRISPR interference complex CSM reveals key similarities with cascade
-
Rouillon C, Zhou M, Zhang J, Politis A, Beilsten-Edmands V, Cannone G, Graham S, Robinson CV, Spagnolo L, White MF. 2013. Structure of the CRISPR interference complex CSM reveals key similarities with cascade. Mol Cell 52: 124-134.
-
(2013)
Mol Cell
, vol.52
, pp. 124-134
-
-
Rouillon, C.1
Zhou, M.2
Zhang, J.3
Politis, A.4
Beilsten-Edmands, V.5
Cannone, G.6
Graham, S.7
Robinson, C.V.8
Spagnolo, L.9
White, M.F.10
-
35
-
-
84930085853
-
Co-transcriptionalDNAand RNA cleavage during Type III CRISPR-Cas immunity
-
Samai P, Pyenson N, Jiang W, Goldberg GW, Hatoum-Aslan A, Marraffini LA. 2015. Co-transcriptionalDNAand RNA cleavage during Type III CRISPR-Cas immunity. Cell 161: 1164-1174.
-
(2015)
Cell
, vol.161
, pp. 1164-1174
-
-
Samai, P.1
Pyenson, N.2
Jiang, W.3
Goldberg, G.W.4
Hatoum-Aslan, A.5
Marraffini, L.A.6
-
36
-
-
84873571066
-
In vitro reconstitution of Cascade- mediated CRISPR immunity in Streptococcus thermophilus
-
Sinkunas T, Gasiunas G, Waghmare SP, Dickman MJ, Barrangou R, Horvath P, Siksnys V. 2013. In vitro reconstitution of Cascade- mediated CRISPR immunity in Streptococcus thermophilus. EMBO J 32: 385-394.
-
(2013)
EMBO J
, vol.32
, pp. 385-394
-
-
Sinkunas, T.1
Gasiunas, G.2
Waghmare, S.P.3
Dickman, M.J.4
Barrangou, R.5
Horvath, P.6
Siksnys, V.7
-
37
-
-
84885355637
-
Structure of anRNAsilencing complex of the CRISPR-Cas immune system
-
Spilman M, Cocozaki A, Hale C, Shao Y, Ramia N, Terns R, Terns M, Li H, Stagg S. 2013. Structure of anRNAsilencing complex of the CRISPR-Cas immune system. Mol Cell 52: 146-152.
-
(2013)
Mol Cell
, vol.52
, pp. 146-152
-
-
Spilman, M.1
Cocozaki, A.2
Hale, C.3
Shao, Y.4
Ramia, N.5
Terns, R.6
Terns, M.7
Li, H.8
Stagg, S.9
-
38
-
-
84885334898
-
Structure and activity of the RNA-targeting Type III-B CRISPR-Cas complex of Thermus thermophilus
-
Staals RHJ, Agari Y, Maki-Yonekura S, Zhu Y, Taylor DW, van Duijn E, Barendregt A, Vlot M, Koehorst JJ, Sakamoto K, et al. 2013. Structure and activity of the RNA-targeting Type III-B CRISPR-Cas complex of Thermus thermophilus. Mol Cell 52: 135-145.
-
(2013)
Mol Cell
, vol.52
, pp. 135-145
-
-
Staals, R.H.J.1
Agari, Y.2
Maki-Yonekura, S.3
Zhu, Y.4
Taylor, D.W.5
van Duijn, E.6
Barendregt, A.7
Vlot, M.8
Koehorst, J.J.9
Sakamoto, K.10
-
39
-
-
84912066885
-
RNA targeting by the Type III-A CRISPR-Cas Csm complex of Thermus thermophilus
-
Staals RHJ, Zhu Y, TaylorDW, Kornfeld JE, Sharma K, Barendregt A, Koehorst JJ, Vlot M, Neupane N, Varossieau K, et al. 2014. RNA targeting by the Type III-A CRISPR-Cas Csm complex of Thermus thermophilus. Mol Cell 56: 518-530.
-
(2014)
Mol Cell
, vol.56
, pp. 518-530
-
-
Staals, R.H.J.1
Zhu, Y.2
Taylor, D.W.3
Kornfeld, J.E.4
Sharma, K.5
Barendregt, A.6
Koehorst, J.J.7
Vlot, M.8
Neupane, N.9
Varossieau, K.10
-
40
-
-
84912096635
-
Programmable RNA shredding by the Type III-A CRISPR-Cas system of Streptococcus thermophilus
-
Tamulaitis G, Kazlauskiene M, Manakova E, Venclovas Cˇ , Nwokeoji AO, Dickman MJ, Horvath P, Siksnys V. 2014. Programmable RNA shredding by the Type III-A CRISPR-Cas system of Streptococcus thermophilus. Mol Cell 56: 506-517.
-
(2014)
Mol Cell
, vol.56
, pp. 506-517
-
-
Tamulaitis, G.1
Kazlauskiene, M.2
Manakova, E.3
Venclovas, Č.4
Nwokeoji, A.O.5
Dickman, M.J.6
Horvath, P.7
Siksnys, V.8
-
41
-
-
84929493523
-
Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning
-
Taylor DW, Zhu Y, Staals RHJ, Kornfeld JE, Shinkai A, van der Oost J, Nogales E, Doudna JA. 2015. Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning. Science 348: 581-585.
-
(2015)
Science
, vol.348
, pp. 581-585
-
-
Taylor, D.W.1
Zhu, Y.2
Staals, R.H.J.3
Kornfeld, J.E.4
Shinkai, A.5
van der Oost, J.6
Nogales, E.7
Doudna, J.A.8
-
43
-
-
0031058485
-
Nuclease cleavage of the upstreamhalf of the nontemplate strand DNA in an Escherichia coli transcription elongation complex causes upstream translocation and transcriptional arrest
-
Wang D, Landick R. 1997. Nuclease cleavage of the upstreamhalf of the nontemplate strand DNA in an Escherichia coli transcription elongation complex causes upstream translocation and transcriptional arrest. J Biol Chem 272: 5989-5994.
-
(1997)
J Biol Chem
, vol.272
, pp. 5989-5994
-
-
Wang, D.1
Landick, R.2
-
44
-
-
84861996069
-
CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3
-
Westra ER, van Erp PBG, Künne T, Wong SP, Staals RHJ, Seegers CLC, Bollen S, JoreMM,Semenova E, Severinov K, et al. 2012. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol Cell 46: 595-605.
-
(2012)
Mol Cell
, vol.46
, pp. 595-605
-
-
Westra, E.R.1
van Erp, P.B.G.2
Künne, T.3
Wong, S.P.4
Staals, R.H.J.5
Seegers, C.L.C.6
Bollen, S.7
Jore, M.M.8
Semenova, E.9
Severinov, K.10
-
45
-
-
84899048370
-
CRISPRmediated targetedmRNAdegradation in the archaeon Sulfolobus solfataricus
-
ZebecZ,ManicaA,ZhangJ,WhiteMF, Schleper C. 2014. CRISPRmediated targetedmRNAdegradation in the archaeon Sulfolobus solfataricus. Nucleic Acids Res 42: 5280-5288.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 5280-5288
-
-
Zebec, Z.1
Manica, A.2
Zhang, J.3
White, M.F.4
Schleper, C.5
-
46
-
-
84856778250
-
Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity
-
Zhang J, Rouillon C, Kerou M, Reeks J, Brugger K, Graham S, Reimann J, Cannone G, Liu H, Albers S-V, et al. 2012. Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity. Mol Cell 45: 303-313.
-
(2012)
Mol Cell
, vol.45
, pp. 303-313
-
-
Zhang, J.1
Rouillon, C.2
Kerou, M.3
Reeks, J.4
Brugger, K.5
Graham, S.6
Reimann, J.7
Cannone, G.8
Liu, H.9
Albers, S.-V.10
-
47
-
-
84941029060
-
Cmr4 is the slicer in the RNA-targeting Cmr CRISPR complex
-
Zhu X, Ye K. 2015. Cmr4 is the slicer in the RNA-targeting Cmr CRISPR complex. Nucleic Acids Res 43: 1257-1267.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 1257-1267
-
-
Zhu, X.1
Ye, K.2
|