-
1
-
-
84947927894
-
The automatic recognition of emotions in speech
-
A. Batliner, B. Schuller, D. Seppi, S. Steidl, L. Devillers, L. Vidrascu, T. Vogt, V. Aharonson, and N. Amir, "The automatic recognition of emotions in speech," Emotion-Oriented Systems, pp. 71-99, 2011.
-
(2011)
Emotion-Oriented Systems
, pp. 71-99
-
-
Batliner, A.1
Schuller, B.2
Seppi, D.3
Steidl, S.4
Devillers, L.5
Vidrascu, L.6
Vogt, T.7
Aharonson, V.8
Amir, N.9
-
2
-
-
80053925819
-
Cross-corpus acoustic emotion recognition: Variances and strategies
-
B. Schuller, B. Vlasenko, F. Eyben, M. Wollmer, A. Stuhlsatz, A. Wendemuth, and G. Rigoll, "Cross-corpus acoustic emotion recognition: Variances and strategies," IEEE Trans. on Affective Computing, vol. 1, no. 2, pp. 119-131, 2010.
-
(2010)
IEEE Trans. on Affective Computing
, vol.1
, Issue.2
, pp. 119-131
-
-
Schuller, B.1
Vlasenko, B.2
Eyben, F.3
Wollmer, M.4
Stuhlsatz, A.5
Wendemuth, A.6
Rigoll, G.7
-
3
-
-
84866381873
-
Transfer learning
-
L. Torrey and J. Shavlik, "Transfer learning," Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques, vol. 1, p. 242, 2009.
-
(2009)
Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques
, vol.1
, pp. 242
-
-
Torrey, L.1
Shavlik, J.2
-
4
-
-
77956031473
-
A survey on transfer learning
-
S. Pan and Q. Yang, "A survey on transfer learning," IEEE Trans. on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345-1359, 2010.
-
(2010)
IEEE Trans. on Knowledge and Data Engineering
, vol.22
, Issue.10
, pp. 1345-1359
-
-
Pan, S.1
Yang, Q.2
-
5
-
-
84872343315
-
Deep learning of representations for unsupervised and transfer learning
-
Bellevue, U. S. A
-
Y. Bengio, "Deep learning of representations for unsupervised and transfer learning," in Proc. ICML, Bellevue, U. S. A., 2011.
-
(2011)
Proc. ICML
-
-
Bengio, Y.1
-
7
-
-
84864073449
-
Greedy layerwise training of deep networks
-
Vancouver, Canada
-
Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, "Greedy layerwise training of deep networks," in Proc. NIPS, Vancouver, Canada, 2007.
-
(2007)
Proc. NIPS
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
8
-
-
80053443013
-
Domain adaptation for largescale sentiment classification: A deep learning approach
-
Bellevue, U. S. A
-
X. Glorot, A. Bordes, and Y. Bengio, "Domain adaptation for largescale sentiment classification: A deep learning approach," in Proc. ICML, Bellevue, U. S. A., 2011.
-
(2011)
Proc. ICML
-
-
Glorot, X.1
Bordes, A.2
Bengio, Y.3
-
9
-
-
84055222005
-
Context-dependent pretrained deep neural networks for large-vocabulary speech recognition
-
G. E. Dahl, D. Yu, L. Deng, and A. Acero, "Context-dependent pretrained deep neural networks for large-vocabulary speech recognition," IEEE Trans. on Audio, Speech, and Language Processing, vol. 20, no. 1, pp. 30-42, 2012.
-
(2012)
IEEE Trans. on Audio, Speech, and Language Processing
, vol.20
, Issue.1
, pp. 30-42
-
-
Dahl, G.E.1
Yu, D.2
Deng, L.3
Acero, A.4
-
10
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
-
G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-R. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., "Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups," Signal Processing Magazine, IEEE, vol. 29, no. 6, pp. 82-97, 2012.
-
(2012)
Signal Processing Magazine, IEEE
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
Deng, L.2
Yu, D.3
Dahl, G.E.4
Mohamed, A.-R.5
Jaitly, N.6
Senior, A.7
Vanhoucke, V.8
Nguyen, P.9
Sainath, T.N.10
-
11
-
-
80051631315
-
Deep neural networks for acoustic emotion recognition: Raising the benchmarks
-
Prague, Czech Republic: IEEE
-
A. Stuhlsatz, C. Meyer, F. Eyben, T. ZieIke, G. Meier, and B. Schuller, "Deep neural networks for acoustic emotion recognition: raising the benchmarks," in Proc. ICASSP. Prague, Czech Republic: IEEE, 2011, pp. 5688-5691.
-
(2011)
Proc. ICASSP.
, pp. 5688-5691
-
-
Stuhlsatz, A.1
Meyer, C.2
Eyben, F.3
Zieike, T.4
Meier, G.5
Schuller, B.6
-
12
-
-
84878405775
-
Likability classification - A not so deep neural network approach
-
Portland, U. S. A
-
R. Brückner and B. Schuller, "Likability Classification - A not so Deep Neural Network Approach," in Proc. INTERSPEECH, Portland, U. S. A., 2012.
-
(2012)
Proc. INTERSPEECH
-
-
Brückner, R.1
Schuller, B.2
-
13
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. Hinton and R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.1
Salakhutdinov, R.2
-
14
-
-
85161980001
-
Sparse deep belief net model for visual area v2
-
Vancouver, Canada
-
H. Lee, C. Ekanadham, and A. Ng, "Sparse deep belief net model for visual area v2," in Proc. NIPS, Vancouver, Canada, 2008, pp. 873-880.
-
(2008)
Proc. NIPS
, pp. 873-880
-
-
Lee, H.1
Ekanadham, C.2
Ng, A.3
-
15
-
-
70450206416
-
The INTERSPEECH 2009 emotion challenge
-
Brisbane, U. K
-
B. Schuller, S. Steidl, and A. Batliner, "The INTERSPEECH 2009 Emotion Challenge," in Proc. INTERSPEECH, Brisbane, U. K., 2009, pp. 2794-2797.
-
(2009)
Proc. INTERSPEECH
, pp. 2794-2797
-
-
Schuller, B.1
Steidl, S.2
Batliner, A.3
-
16
-
-
70349292240
-
Being bored? Recognising natural interest by extensive audiovisual integration for real-life application
-
B. Schuller, R. Müller, F. Eyben, J. Gast, B. Hörnler, M. Wöllmer, G. Rigoll, A. Höthker, and H. Konosu, "Being Bored? Recognising Natural Interest by Extensive Audiovisual Integration for Real-Life Application," Image and Vision Computing, vol. 27, no. 12, pp. 1760-1774, 2009.
-
(2009)
Image and Vision Computing
, vol.27
, Issue.12
, pp. 1760-1774
-
-
Schuller, B.1
Müller, R.2
Eyben, F.3
Gast, J.4
Hörnler, B.5
Wöllmer, M.6
Rigoll, G.7
Höthker, A.8
Konosu, H.9
-
17
-
-
34247610490
-
A database of german emotional speech
-
Lisbon, Portugal
-
F. Burkhardt, A. Paeschke, M. Rolfes, W. Sendlmeier, and B. Weiss, "A database of german emotional speech," in Proc. INTERSPEECH, Lisbon, Portugal, 2005.
-
(2005)
Proc. INTERSPEECH
-
-
Burkhardt, F.1
Paeschke, A.2
Rolfes, M.3
Sendlmeier, W.4
Weiss, B.5
-
18
-
-
84922798491
-
The enterface'05 audiovisual emotion database
-
O. Martin, I. Kotsia, B. Macq, and I. Pitas, "The enterface'05 audiovisual emotion database," IEEE Workshop on Multimedia Database Management, 2006.
-
(2006)
IEEE Workshop on Multimedia Database Management
-
-
Martin, O.1
Kotsia, I.2
MacQ, B.3
Pitas, I.4
-
19
-
-
85089273681
-
Getting started with SUSAS: A speech under simulated and actual stress database
-
Rhodes, Greece
-
J. Hansen and S. Bou-Ghazale, "Getting Started with SUSAS: A Speech Under Simulated and Actual Stress Database," in Proc. EUROSPEECH- 97, Rhodes, Greece, 1997.
-
(1997)
Proc. EUROSPEECH- 97
-
-
Hansen, J.1
Bou-Ghazale, S.2
-
20
-
-
54049132925
-
The vera am mittag german audio-visual emotional speech database
-
Hannover, Germany
-
M. Grimm, K. Kroschel, and S. Narayanan, "The Vera am Mittag German Audio-visual Emotional Speech Database," in Proc. ICME, Hannover, Germany, 2008, pp. 865-868.
-
(2008)
Proc. ICME
, pp. 865-868
-
-
Grimm, M.1
Kroschel, K.2
Narayanan, S.3
-
21
-
-
77949415384
-
OpenEAR - Introducing the munich open-source emotion and affect recognition toolkit
-
Amsterdam
-
F. Eyben, M. Wöllmer, and B. Schuller, "openEAR - Introducing the Munich Open-Source Emotion and Affect Recognition Toolkit," in Proc. ACII, Amsterdam, 2009, pp. 576-581.
-
(2009)
Proc. ACII
, pp. 576-581
-
-
Eyben, F.1
Wöllmer, M.2
Schuller, B.3
-
23
-
-
33744966595
-
Switching dynamic system models for speech articulation and acoustics
-
Springer
-
-, "Switching dynamic system models for speech articulation and acoustics," in Mathematical Foundations of Speech and Language Processing. Springer, 2004, pp. 115-133.
-
(2004)
Mathematical Foundations of Speech and Language Processing
, pp. 115-133
-
-
Deng, L.1
-
24
-
-
84860644702
-
Measuring invariances in deep networks
-
Vancouver, Canada
-
I. Goodfellow, Q. Le, A. Saxe, H. Lee, and A. Ng, "Measuring invariances in deep networks," in Proc. NIPS, Vancouver, Canada, 2009, pp. 646-654.
-
(2009)
Proc. NIPS
, pp. 646-654
-
-
Goodfellow, I.1
Le, Q.2
Saxe, A.3
Lee, H.4
Ng, A.5
-
25
-
-
50949133669
-
Liblinear: A library for large linear classification
-
R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin, "Liblinear: A library for large linear classification," The Journal of Machine Learning Research, vol. 9, pp. 1871-1874, 2008.
-
(2008)
The Journal of Machine Learning Research
, vol.9
, pp. 1871-1874
-
-
Fan, R.1
Chang, K.2
Hsieh, C.3
Wang, X.4
Lin, C.5
-
26
-
-
0346586663
-
Smote: Synthetic minority over-sampling technique
-
N. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer, "Smote: Synthetic minority over-sampling technique," Journal of Artificial Intelligence Research, vol. 16, pp. 321-357, 2002.
-
(2002)
Journal of Artificial Intelligence Research
, vol.16
, pp. 321-357
-
-
Chawla, N.1
Bowyer, K.2
Hall, L.3
Kegelmeyer, W.4
|