메뉴 건너뛰기




Volumn , Issue , 2013, Pages 511-516

Sparse autoencoder-based feature transfer learning for speech emotion recognition

Author keywords

Deep neural networks; Sparse autoencoder; Speech emotion recognition; Transfer learning

Indexed keywords

AUTO ENCODERS; DEEP NEURAL NETWORKS; DIFFERENT DOMAINS; FEATURE TRANSFERS; SPEECH EMOTION RECOGNITION; SYSTEM DEVELOPMENT; TARGET DOMAIN; TRANSFER LEARNING;

EID: 84893302329     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ACII.2013.90     Document Type: Conference Paper
Times cited : (393)

References (26)
  • 5
    • 84872343315 scopus 로고    scopus 로고
    • Deep learning of representations for unsupervised and transfer learning
    • Bellevue, U. S. A
    • Y. Bengio, "Deep learning of representations for unsupervised and transfer learning," in Proc. ICML, Bellevue, U. S. A., 2011.
    • (2011) Proc. ICML
    • Bengio, Y.1
  • 8
    • 80053443013 scopus 로고    scopus 로고
    • Domain adaptation for largescale sentiment classification: A deep learning approach
    • Bellevue, U. S. A
    • X. Glorot, A. Bordes, and Y. Bengio, "Domain adaptation for largescale sentiment classification: A deep learning approach," in Proc. ICML, Bellevue, U. S. A., 2011.
    • (2011) Proc. ICML
    • Glorot, X.1    Bordes, A.2    Bengio, Y.3
  • 9
    • 84055222005 scopus 로고    scopus 로고
    • Context-dependent pretrained deep neural networks for large-vocabulary speech recognition
    • G. E. Dahl, D. Yu, L. Deng, and A. Acero, "Context-dependent pretrained deep neural networks for large-vocabulary speech recognition," IEEE Trans. on Audio, Speech, and Language Processing, vol. 20, no. 1, pp. 30-42, 2012.
    • (2012) IEEE Trans. on Audio, Speech, and Language Processing , vol.20 , Issue.1 , pp. 30-42
    • Dahl, G.E.1    Yu, D.2    Deng, L.3    Acero, A.4
  • 11
    • 80051631315 scopus 로고    scopus 로고
    • Deep neural networks for acoustic emotion recognition: Raising the benchmarks
    • Prague, Czech Republic: IEEE
    • A. Stuhlsatz, C. Meyer, F. Eyben, T. ZieIke, G. Meier, and B. Schuller, "Deep neural networks for acoustic emotion recognition: raising the benchmarks," in Proc. ICASSP. Prague, Czech Republic: IEEE, 2011, pp. 5688-5691.
    • (2011) Proc. ICASSP. , pp. 5688-5691
    • Stuhlsatz, A.1    Meyer, C.2    Eyben, F.3    Zieike, T.4    Meier, G.5    Schuller, B.6
  • 12
    • 84878405775 scopus 로고    scopus 로고
    • Likability classification - A not so deep neural network approach
    • Portland, U. S. A
    • R. Brückner and B. Schuller, "Likability Classification - A not so Deep Neural Network Approach," in Proc. INTERSPEECH, Portland, U. S. A., 2012.
    • (2012) Proc. INTERSPEECH
    • Brückner, R.1    Schuller, B.2
  • 13
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. Hinton and R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.2
  • 14
    • 85161980001 scopus 로고    scopus 로고
    • Sparse deep belief net model for visual area v2
    • Vancouver, Canada
    • H. Lee, C. Ekanadham, and A. Ng, "Sparse deep belief net model for visual area v2," in Proc. NIPS, Vancouver, Canada, 2008, pp. 873-880.
    • (2008) Proc. NIPS , pp. 873-880
    • Lee, H.1    Ekanadham, C.2    Ng, A.3
  • 15
    • 70450206416 scopus 로고    scopus 로고
    • The INTERSPEECH 2009 emotion challenge
    • Brisbane, U. K
    • B. Schuller, S. Steidl, and A. Batliner, "The INTERSPEECH 2009 Emotion Challenge," in Proc. INTERSPEECH, Brisbane, U. K., 2009, pp. 2794-2797.
    • (2009) Proc. INTERSPEECH , pp. 2794-2797
    • Schuller, B.1    Steidl, S.2    Batliner, A.3
  • 19
    • 85089273681 scopus 로고    scopus 로고
    • Getting started with SUSAS: A speech under simulated and actual stress database
    • Rhodes, Greece
    • J. Hansen and S. Bou-Ghazale, "Getting Started with SUSAS: A Speech Under Simulated and Actual Stress Database," in Proc. EUROSPEECH- 97, Rhodes, Greece, 1997.
    • (1997) Proc. EUROSPEECH- 97
    • Hansen, J.1    Bou-Ghazale, S.2
  • 20
    • 54049132925 scopus 로고    scopus 로고
    • The vera am mittag german audio-visual emotional speech database
    • Hannover, Germany
    • M. Grimm, K. Kroschel, and S. Narayanan, "The Vera am Mittag German Audio-visual Emotional Speech Database," in Proc. ICME, Hannover, Germany, 2008, pp. 865-868.
    • (2008) Proc. ICME , pp. 865-868
    • Grimm, M.1    Kroschel, K.2    Narayanan, S.3
  • 21
    • 77949415384 scopus 로고    scopus 로고
    • OpenEAR - Introducing the munich open-source emotion and affect recognition toolkit
    • Amsterdam
    • F. Eyben, M. Wöllmer, and B. Schuller, "openEAR - Introducing the Munich Open-Source Emotion and Affect Recognition Toolkit," in Proc. ACII, Amsterdam, 2009, pp. 576-581.
    • (2009) Proc. ACII , pp. 576-581
    • Eyben, F.1    Wöllmer, M.2    Schuller, B.3
  • 23
    • 33744966595 scopus 로고    scopus 로고
    • Switching dynamic system models for speech articulation and acoustics
    • Springer
    • -, "Switching dynamic system models for speech articulation and acoustics," in Mathematical Foundations of Speech and Language Processing. Springer, 2004, pp. 115-133.
    • (2004) Mathematical Foundations of Speech and Language Processing , pp. 115-133
    • Deng, L.1
  • 24
    • 84860644702 scopus 로고    scopus 로고
    • Measuring invariances in deep networks
    • Vancouver, Canada
    • I. Goodfellow, Q. Le, A. Saxe, H. Lee, and A. Ng, "Measuring invariances in deep networks," in Proc. NIPS, Vancouver, Canada, 2009, pp. 646-654.
    • (2009) Proc. NIPS , pp. 646-654
    • Goodfellow, I.1    Le, Q.2    Saxe, A.3    Lee, H.4    Ng, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.