-
1
-
-
78649716727
-
Manufacturing molecules through metabolic engineering
-
Keasling J.D. Manufacturing molecules through metabolic engineering. Science 2010, 330:1355-1358.
-
(2010)
Science
, vol.330
, pp. 1355-1358
-
-
Keasling, J.D.1
-
2
-
-
57049098094
-
Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels
-
Lee S.K., et al. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr. Opin. Biotechnol. 2008, 19:556-563.
-
(2008)
Curr. Opin. Biotechnol.
, vol.19
, pp. 556-563
-
-
Lee, S.K.1
-
3
-
-
33947635689
-
Advances in citric acid fermentation by Aspergillus niger: biochemical aspects, membrane transport and modeling
-
Papagianni M. Advances in citric acid fermentation by Aspergillus niger: biochemical aspects, membrane transport and modeling. Biotechnol. Adv. 2007, 25:244-263.
-
(2007)
Biotechnol. Adv.
, vol.25
, pp. 244-263
-
-
Papagianni, M.1
-
4
-
-
0041429540
-
Industrial production of amino acids by coryneform bacteria
-
Hermann T. Industrial production of amino acids by coryneform bacteria. J. Biotechnol. 2003, 104:155-172.
-
(2003)
J. Biotechnol.
, vol.104
, pp. 155-172
-
-
Hermann, T.1
-
5
-
-
33747280991
-
Production of succinic acid by bacterial fermentation
-
Song H., Lee S.Y. Production of succinic acid by bacterial fermentation. Enzyme Microb. Technol. 2006, 39:352-361.
-
(2006)
Enzyme Microb. Technol.
, vol.39
, pp. 352-361
-
-
Song, H.1
Lee, S.Y.2
-
6
-
-
84916625236
-
Influence of the pH on the itaconic acid production with Aspergillus terreus
-
Hevekerl A., et al. Influence of the pH on the itaconic acid production with Aspergillus terreus. Appl. Microbiol. Biotechnol. 2014, 98:10005-10012.
-
(2014)
Appl. Microbiol. Biotechnol.
, vol.98
, pp. 10005-10012
-
-
Hevekerl, A.1
-
7
-
-
84923868017
-
Metabolic engineering of itaconate production in Escherichia coli
-
Vuoristo K.S., et al. Metabolic engineering of itaconate production in Escherichia coli. Appl. Microbiol. Biotechnol. 2015, 99:221-228.
-
(2015)
Appl. Microbiol. Biotechnol.
, vol.99
, pp. 221-228
-
-
Vuoristo, K.S.1
-
8
-
-
79959374585
-
Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol
-
Yim H., et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat. Chem. Biol. 2011, 7:445-452.
-
(2011)
Nat. Chem. Biol.
, vol.7
, pp. 445-452
-
-
Yim, H.1
-
9
-
-
83255174106
-
Relative potential of biosynthetic pathways for biofuels and bio-based products
-
Dugar D., Stephanopoulos G. Relative potential of biosynthetic pathways for biofuels and bio-based products. Nat. Biotechnol. 2011, 29:1074-1078.
-
(2011)
Nat. Biotechnol.
, vol.29
, pp. 1074-1078
-
-
Dugar, D.1
Stephanopoulos, G.2
-
10
-
-
84856580515
-
Succinate production in Escherichia coli
-
Thakker C., et al. Succinate production in Escherichia coli. Biotechnol. J. 2012, 7:213-224.
-
(2012)
Biotechnol. J.
, vol.7
, pp. 213-224
-
-
Thakker, C.1
-
11
-
-
84883554005
-
A reverse glyoxylate shunt to build a non-native route from C-to C-in Escherichia coli
-
Mainguet S.E., et al. A reverse glyoxylate shunt to build a non-native route from C-to C-in Escherichia coli. Metab. Eng. 2013, 19:116-127.
-
(2013)
Metab. Eng.
, vol.19
, pp. 116-127
-
-
Mainguet, S.E.1
-
12
-
-
80053436353
-
2 utilizing microbes - a comprehensive review
-
2 utilizing microbes - a comprehensive review. Biotechnol. Adv. 2011, 29:949-960.
-
(2011)
Biotechnol. Adv.
, vol.29
, pp. 949-960
-
-
Saini, R.1
-
13
-
-
0344064070
-
Characterization of two different 2-oxoglutarate:ferredoxin oxidoreductases from Hydrogenobacter thermophilus TK-6
-
Yamamoto M., et al. Characterization of two different 2-oxoglutarate:ferredoxin oxidoreductases from Hydrogenobacter thermophilus TK-6. Biochem. Biophys. Res. Commun. 2003, 312:1297-1302.
-
(2003)
Biochem. Biophys. Res. Commun.
, vol.312
, pp. 1297-1302
-
-
Yamamoto, M.1
-
14
-
-
29244479524
-
Anabolic five subunit-type pyruvate:ferredoxin oxidoreductase from Hydrogenobacter thermophilus TK-6
-
Ikeda T., et al. Anabolic five subunit-type pyruvate:ferredoxin oxidoreductase from Hydrogenobacter thermophilus TK-6. Biochem. Biophys. Res. Commun. 2006, 340:76-82.
-
(2006)
Biochem. Biophys. Res. Commun.
, vol.340
, pp. 76-82
-
-
Ikeda, T.1
-
15
-
-
72449153805
-
Carboxylation reaction catalyzed by 2-oxoglutarate:ferredoxin oxidoreductases from Hydrogenobacter thermophilus
-
Yamamoto M., et al. Carboxylation reaction catalyzed by 2-oxoglutarate:ferredoxin oxidoreductases from Hydrogenobacter thermophilus. Extremophiles 2010, 14:79-85.
-
(2010)
Extremophiles
, vol.14
, pp. 79-85
-
-
Yamamoto, M.1
-
16
-
-
44049083061
-
Metabolic engineering of Escherichia coli for the production of malic acid
-
Moon S.Y., et al. Metabolic engineering of Escherichia coli for the production of malic acid. Biochem. Eng. J. 2008, 40:312-320.
-
(2008)
Biochem. Eng. J.
, vol.40
, pp. 312-320
-
-
Moon, S.Y.1
-
17
-
-
79952705331
-
Microbial production of bulk chemicals: development of anaerobic processes
-
Weusthuis R.A., et al. Microbial production of bulk chemicals: development of anaerobic processes. Trends Biotechnol. 2011, 29:153-158.
-
(2011)
Trends Biotechnol.
, vol.29
, pp. 153-158
-
-
Weusthuis, R.A.1
-
18
-
-
0034581365
-
Production of citric acid from molasses integrated with in-situ product separation by ion-exchange resin adsorption
-
Jianlong W., et al. Production of citric acid from molasses integrated with in-situ product separation by ion-exchange resin adsorption. Bioresour. Technol. 2000, 75:231-234.
-
(2000)
Bioresour. Technol.
, vol.75
, pp. 231-234
-
-
Jianlong, W.1
-
19
-
-
84898923712
-
Physiological characterization of the high malic acid-producing Aspergillus oryzae strain 2103a-68
-
Knuf C., et al. Physiological characterization of the high malic acid-producing Aspergillus oryzae strain 2103a-68. Appl. Microbiol. Biotechnol 2014, 98:3517-3527.
-
(2014)
Appl. Microbiol. Biotechnol
, vol.98
, pp. 3517-3527
-
-
Knuf, C.1
-
20
-
-
0029783287
-
Simultaneous production and recovery of fumaric acid from immobilized Rhizopus oryzae with a rotary biofilm contactor and an adsorption column
-
Cao N., et al. Simultaneous production and recovery of fumaric acid from immobilized Rhizopus oryzae with a rotary biofilm contactor and an adsorption column. Appl. Environ. Microbiol. 1996, 62:2926-2931.
-
(1996)
Appl. Environ. Microbiol.
, vol.62
, pp. 2926-2931
-
-
Cao, N.1
-
21
-
-
18944378749
-
Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity
-
Sánchez A.M., et al. Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metab. Eng. 2005, 7:229-239.
-
(2005)
Metab. Eng.
, vol.7
, pp. 229-239
-
-
Sánchez, A.M.1
-
22
-
-
84908257459
-
Sustainability metrics for succinic acid production: a comparison between biomass-based and petrochemical routes
-
Pinazo J.M., et al. Sustainability metrics for succinic acid production: a comparison between biomass-based and petrochemical routes. Catalysis Today 2015, 239:17-24.
-
(2015)
Catalysis Today
, vol.239
, pp. 17-24
-
-
Pinazo, J.M.1
-
23
-
-
0031007854
-
Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp 130Z
-
Van der Werf M.J., et al. Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp 130Z. Arch. Microbiol. 1997, 167:332-342.
-
(1997)
Arch. Microbiol.
, vol.167
, pp. 332-342
-
-
Van der Werf, M.J.1
-
25
-
-
84901340681
-
Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli
-
Zhu X., et al. Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli. Metab. Eng. 2014, 24:87-96.
-
(2014)
Metab. Eng.
, vol.24
, pp. 87-96
-
-
Zhu, X.1
|