메뉴 건너뛰기




Volumn 19-23-Oct-2015, Issue , 2015, Pages 811-820

Deep collaborative filtering via marginalized denoising auto-encoder

Author keywords

Collaborative filtering; Deep learning; Denoising auto encoder; Matrix factorization

Indexed keywords

FACTORIZATION; KNOWLEDGE MANAGEMENT; LEARNING SYSTEMS; MATRIX ALGEBRA;

EID: 84958235011     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2806416.2806527     Document Type: Conference Paper
Times cited : (483)

References (44)
  • 2
    • 85008044987 scopus 로고    scopus 로고
    • Matrix factorization techniques for recommender systems
    • Yehuda Koren, Robert M. Bell, and Chris Volinsky. Matrix factorization techniques for recommender systems. IEEE Computer, 42(8):30-37, 2009.
    • (2009) IEEE Computer , vol.42 , Issue.8 , pp. 30-37
    • Koren, Y.1    Bell, R.M.2    Volinsky, C.3
  • 3
    • 84889586257 scopus 로고    scopus 로고
    • Nonparametric Bayesian multitask collaborative filtering
    • Sotirios Chatzis. Nonparametric bayesian multitask collaborative filtering. In CIKM, pages 2149-2158, 2013.
    • (2013) CIKM , pp. 2149-2158
    • Chatzis, S.1
  • 4
    • 48349135120 scopus 로고    scopus 로고
    • Probabilistic matrix factorization
    • Ruslan Salakhutdinov and Andriy Mnih. Probabilistic matrix factorization. In NIPS, 2007.
    • (2007) NIPS
    • Salakhutdinov, R.1    Mnih, A.2
  • 5
    • 79952399179 scopus 로고    scopus 로고
    • Recommender systems with social regularization
    • Hao Ma, Dengyong Zhou, Chao Liu, Michael R. Lyu, and Irwin King. Recommender systems with social regularization. In WSDM, pages 287-296, 2011.
    • (2011) WSDM , pp. 287-296
    • Ma, H.1    Zhou, D.2    Liu, C.3    Lyu, M.R.4    King, I.5
  • 6
    • 65449121541 scopus 로고    scopus 로고
    • Relational learning via collective matrix factorization
    • Ajit Paul Singh and Geoffrey J. Gordon. Relational learning via collective matrix factorization. In KDD, pages 650-658, 2008.
    • (2008) KDD , pp. 650-658
    • Singh, A.P.1    Gordon, G.J.2
  • 7
    • 84977857699 scopus 로고    scopus 로고
    • A Bayesian matrix factorization model for relational data
    • Ajit Paul Singh and Geoffrey J. Gordon. A bayesian matrix factorization model for relational data. CoRR, abs/1203.3517, 2012.
    • (2012) CoRR, Abs/1203.3517
    • Singh, A.P.1    Gordon, G.J.2
  • 8
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 9
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Geoffrey Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief nets. Neural computation, 18(7):1527-1554, 2006.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.-W.3
  • 10
    • 34547983260 scopus 로고    scopus 로고
    • Restricted boltzmann machines for collaborative filtering
    • Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey E. Hinton. Restricted boltzmann machines for collaborative filtering. In ICML, pages 791-798, 2007.
    • (2007) ICML , pp. 791-798
    • Salakhutdinov, R.1    Mnih, A.2    Hinton, G.E.3
  • 11
    • 84897544713 scopus 로고    scopus 로고
    • A non-iid framework for collaborative filtering with restricted boltzmann machines
    • Kostadin Georgiev and Preslav Nakov. A non-iid framework for collaborative filtering with restricted boltzmann machines. In ICML, pages 1148-1156, 2013.
    • (2013) ICML , pp. 1148-1156
    • Georgiev, K.1    Nakov, P.2
  • 12
    • 84913528232 scopus 로고    scopus 로고
    • Improving content-based and hybrid music recommendation using deep learning
    • Xinxi Wang and Ye Wang. Improving content-based and hybrid music recommendation using deep learning. In ACM MM, pages 627-636, 2014.
    • (2014) ACM MM , pp. 627-636
    • Wang, X.1    Wang, Y.2
  • 13
    • 84898973716 scopus 로고    scopus 로고
    • Deep content-based music recommendation
    • Aäron Van Den Oord, Sander Dieleman, and Benjamin Schrauwen. Deep content-based music recommendation. In NIPS, pages 2643-2651, 2013.
    • (2013) NIPS , pp. 2643-2651
    • Van Den Oord, A.1    Dieleman, S.2    Schrauwen, B.3
  • 14
    • 80053145987 scopus 로고    scopus 로고
    • Ordinal boltzmann machines for collaborative filtering
    • Tran The Truyen, Dinh Q. Phung, and Svetha Venkatesh. Ordinal boltzmann machines for collaborative filtering. In UAI, pages 548-556, 2009.
    • (2009) UAI , pp. 548-556
    • Truyen, T.T.1    Phung, D.Q.2    Venkatesh, S.3
  • 15
    • 84949870116 scopus 로고    scopus 로고
    • Collaborative deep learning for recommender systems
    • Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative deep learning for recommender systems. CoRR, abs/1409.2944, 2014.
    • (2014) CoRR, Abs/1409.2944
    • Wang, H.1    Wang, N.2    Yeung, D.-Y.3
  • 16
    • 84867129067 scopus 로고    scopus 로고
    • Marginalized denoising autoencoders for domain adaptation
    • Minmin Chen, Zhixiang Eddie Xu, Kilian Q. Weinberger, and Fei Sha. Marginalized denoising autoencoders for domain adaptation. In ICML, 2012.
    • (2012) ICML
    • Chen, M.1    Xu, Z.E.2    Weinberger, K.Q.3    Sha, F.4
  • 19
    • 77956944781 scopus 로고    scopus 로고
    • Spectral regularization algorithms for learning large incomplete matrices
    • Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral regularization algorithms for learning large incomplete matrices. The Journal of Machine Learning Research, 11:2287-2322, 2010.
    • (2010) The Journal of Machine Learning Research , vol.11 , pp. 2287-2322
    • Mazumder, R.1    Hastie, T.2    Tibshirani, R.3
  • 20
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • Daniel D Lee and H Sebastian Seung. Algorithms for non-negative matrix factorization. In NIPS, pages 556-562, 2001.
    • (2001) NIPS , pp. 556-562
    • Lee, D.D.1    Sebastian Seung, H.2
  • 21
    • 56449131205 scopus 로고    scopus 로고
    • Bayesian probabilistic matrix factorization using Markov chain Monte Carlo
    • Ruslan Salakhutdinov and Andriy Mnih. Bayesian probabilistic matrix factorization using markov chain monte carlo. In ICML, pages 880-887, 2008.
    • (2008) ICML , pp. 880-887
    • Salakhutdinov, R.1    Mnih, A.2
  • 22
    • 84897476679 scopus 로고    scopus 로고
    • Fast max-margin matrix factorization with data augmentation
    • Minjie Xu, Jun Zhu, and Bo Zhang. Fast max-margin matrix factorization with data augmentation. ICML, 2013.
    • (2013) ICML
    • Xu, M.1    Zhu, J.2    Zhang, B.3
  • 23
    • 84896061534 scopus 로고    scopus 로고
    • SCMF: Sparse covariance matrix factorization for collaborative filtering
    • Jianping Shi, Naiyan Wang, Yang Xia, Dit-Yan Yeung, Irwin King, and Jiaya Jia. SCMF: sparse covariance matrix factorization for collaborative filtering. In IJCAI, 2013.
    • (2013) IJCAI
    • Shi, J.1    Wang, N.2    Xia, Y.3    Yeung, D.-Y.4    King, I.5    Jia, J.6
  • 24
    • 80052416079 scopus 로고    scopus 로고
    • Incorporating side information in probabilistic matrix factorization with Gaussian processes
    • Ryan Prescott Adams, George E. Dahl, and Iain Murray. Incorporating side information in probabilistic matrix factorization with gaussian processes. In UAI, pages 1-9, 2010.
    • (2010) UAI , pp. 1-9
    • Adams, R.P.1    Dahl, G.E.2    Murray, I.3
  • 25
    • 84930194482 scopus 로고    scopus 로고
    • Leveraging social connections to improve personalized ranking for collaborative filtering
    • Tong Zhao, Julian J. McAuley, and Irwin King. Leveraging social connections to improve personalized ranking for collaborative filtering. In CIKM, pages 261-270, 2014.
    • (2014) CIKM , pp. 261-270
    • Zhao, T.1    McAuley, J.J.2    King, I.3
  • 26
    • 85071783077 scopus 로고    scopus 로고
    • Bayesian matrix factorization with side information and dirichlet process mixtures
    • Ian Porteous, Arthur U. Asuncion, and Max Welling. Bayesian matrix factorization with side information and dirichlet process mixtures. In AAAI, 2010.
    • (2010) AAAI
    • Porteous, I.1    Asuncion, A.U.2    Welling, M.3
  • 27
    • 84955480178 scopus 로고    scopus 로고
    • Scalable variational Bayesian matrix factorization with side information
    • Yong-Deok Kim and Seungjin Choi. Scalable variational bayesian matrix factorization with side information. In AISTATS, pages 493-502, 2014.
    • (2014) AISTATS , pp. 493-502
    • Kim, Y.-D.1    Choi, S.2
  • 28
    • 84896061714 scopus 로고    scopus 로고
    • Hierarchical Bayesian matrix factorization with side information
    • Sunho Park, Yong-Deok Kim, and Seungjin Choi. Hierarchical bayesian matrix factorization with side information. In IJCAI, 2013.
    • (2013) IJCAI
    • Park, S.1    Kim, Y.-D.2    Choi, S.3
  • 29
    • 84891773848 scopus 로고    scopus 로고
    • Personalized recommendation via cross-domain triadic factorization
    • Liang Hu, Jian Cao, Guandong Xu, Longbing Cao, Zhiping Gu, and Can Zhu. Personalized recommendation via cross-domain triadic factorization. In WWW, pages 595-606, 2013.
    • (2013) WWW , pp. 595-606
    • Hu, L.1    Cao, J.2    Xu, G.3    Cao, L.4    Gu, Z.5    Zhu, C.6
  • 30
    • 80052679175 scopus 로고    scopus 로고
    • Response prediction using collaborative filtering with hierarchies and side-information
    • Aditya Krishna Menon, Krishna Prasad Chitrapura, Sachin Garg, Deepak Agarwal, and Nagaraj Kota. Response prediction using collaborative filtering with hierarchies and side-information. In KDD, pages 141-149, 2011.
    • (2011) KDD , pp. 141-149
    • Menon, A.K.1    Chitrapura, K.P.2    Garg, S.3    Agarwal, D.4    Kota, N.5
  • 31
    • 84953707906 scopus 로고    scopus 로고
    • Predicting user behavior in display advertising via dynamic collective matrix factorization
    • Sheng Li, Jaya Kawale, and Yun Fu. Predicting user behavior in display advertising via dynamic collective matrix factorization. In SIGIR, 2015.
    • (2015) SIGIR
    • Li, S.1    Kawale, J.2    Fu, Y.3
  • 32
    • 84908151646 scopus 로고    scopus 로고
    • Deep modeling of group preferences for group-based recommendation
    • Liang Hu, Jian Cao, Guandong Xu, Longbing Cao, Zhiping Gu, and Wei Cao. Deep modeling of group preferences for group-based recommendation. In AAAI, pages 1861-1867, 2014.
    • (2014) AAAI , pp. 1861-1867
    • Hu, L.1    Cao, J.2    Xu, G.3    Cao, L.4    Gu, Z.5    Cao, W.6
  • 33
    • 84910016320 scopus 로고    scopus 로고
    • Autoencoder-based collaborative filtering
    • Yuanxin Ouyang, Wenqi Liu, Wenge Rong, and Zhang Xiong. Autoencoder-based collaborative filtering. In ICONIP, pages 284-291, 2014.
    • (2014) ICONIP , pp. 284-291
    • Ouyang, Y.1    Liu, W.2    Rong, W.3    Xiong, Z.4
  • 34
    • 56449131205 scopus 로고    scopus 로고
    • Bayesian probabilistic matrix factorization using Markov chain Monte Carlo
    • ACM
    • Ruslan Salakhutdinov and Andriy Mnih. Bayesian probabilistic matrix factorization using markov chain monte carlo. In ICML, pages 880-887. ACM, 2008.
    • (2008) ICML , pp. 880-887
    • Salakhutdinov, R.1    Mnih, A.2
  • 35
    • 67049164166 scopus 로고    scopus 로고
    • Collaborative filtering for implicit feedback datasets
    • Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit feedback datasets. In ICDM, pages 263-272, 2008.
    • (2008) ICDM , pp. 263-272
    • Hu, Y.1    Koren, Y.2    Volinsky, C.3
  • 36
    • 70450177775 scopus 로고    scopus 로고
    • Learning invariant features through topographic filter maps
    • IEEE
    • Koray Kavukcuoglu, MarcâAZAurelio Ranzato, Rob Fergus, and Yann Le-Cun. Learning invariant features through topographic filter maps. In CVPR, pages 1605-1612. IEEE, 2009.
    • (2009) CVPR , pp. 1605-1612
    • Kavukcuoglu, K.1    Ranzato, M.A.2    Fergus, R.3    Yann, L.-C.4
  • 37
    • 84863380535 scopus 로고    scopus 로고
    • Unsupervised feature learning for audio classification using convolutional deep belief networks
    • Honglak Lee, Peter Pham, Yan Largman, and Andrew Y Ng. Unsupervised feature learning for audio classification using convolutional deep belief networks. In NIPS, pages 1096-1104, 2009.
    • (2009) NIPS , pp. 1096-1104
    • Lee, H.1    Pham, P.2    Largman, Y.3    Ng, A.Y.4
  • 38
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • ACM
    • Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and composing robust features with denoising autoencoders. In ICML, pages 1096-1103. ACM, 2008.
    • (2008) ICML , pp. 1096-1103
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.-A.4
  • 39
    • 84919825814 scopus 로고    scopus 로고
    • Marginalized denoising auto-encoders for nonlinear representations
    • Minmin Chen, Kilian Q. Weinberger, Fei Sha, and Yoshua Bengio. Marginalized denoising auto-encoders for nonlinear representations. In ICML, pages 1476-1484, 2014.
    • (2014) ICML , pp. 1476-1484
    • Chen, M.1    Weinberger, K.Q.2    Sha, F.3    Bengio, Y.4
  • 40
    • 84937605005 scopus 로고    scopus 로고
    • Distributed stochastic ADMM for matrix factorization
    • Zhi-Qin Yu, Xing-Jian Shi, Ling Yan, and Wu-Jun Li. Distributed stochastic ADMM for matrix factorization. In CIKM, pages 1259-1268, 2014.
    • (2014) CIKM , pp. 1259-1268
    • Yu, Z.-Q.1    Shi, X.-J.2    Yan, L.3    Li, W.-J.4
  • 41
    • 65449121157 scopus 로고    scopus 로고
    • Factorization meets the neighborhood: A multifaceted collaborative filtering model
    • Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In KDD, pages 426-434, 2008.
    • (2008) KDD , pp. 426-434
    • Koren, Y.1
  • 42
    • 84883103691 scopus 로고    scopus 로고
    • An experimental study on implicit social recommendation
    • Hao Ma. An experimental study on implicit social recommendation. In SIGIR, pages 73-82, 2013.
    • (2013) SIGIR , pp. 73-82
    • Ma, H.1
  • 43
    • 84921839680 scopus 로고    scopus 로고
    • Coupled item-based matrix factorization
    • Fangfang Li, Guandong Xu, and Longbing Cao. Coupled item-based matrix factorization. In WISE, pages 1-14, 2014.
    • (2014) WISE , pp. 1-14
    • Li, F.1    Xu, G.2    Cao, L.3
  • 44
    • 84906852218 scopus 로고    scopus 로고
    • Scalable hierarchical multitask learning algorithms for conversion optimization in display advertising
    • Amr Ahmed, Abhimanyu Das, and Alexander J. Smola. Scalable hierarchical multitask learning algorithms for conversion optimization in display advertising. In WSDM, pages 153-162, 2014.
    • (2014) WSDM , pp. 153-162
    • Ahmed, A.1    Das, A.2    Smola, A.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.