메뉴 건너뛰기




Volumn , Issue , 2013, Pages 2149-2158

Nonparametric Bayesian multitask collaborative filtering

Author keywords

Collaborative filtering; Indian Buffet Process; Multitask learning

Indexed keywords

BAYESIAN NONPARAMETRICS; COLLABORATIVE FILTERING SYSTEMS; COMPUTER SCIENCE RESEARCH; DATA SPARSITY PROBLEMS; INFORMATION SHARING MECHANISM; LATENT FACTOR MODELS; MULTITASK LEARNING; NON-PARAMETRIC BAYESIAN;

EID: 84889586257     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2505515.2505517     Document Type: Conference Paper
Times cited : (23)

References (34)
  • 1
    • 20844435854 scopus 로고    scopus 로고
    • Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
    • G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6):734-749, 2005.
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.6 , pp. 734-749
    • Adomavicius, G.1    Tuzhilin, A.2
  • 3
    • 40749103793 scopus 로고    scopus 로고
    • Signal modeling and classification using a robust latent space model based on t distributions
    • March
    • S. Chatzis, D. Kosmopoulos, and T. Varvarigou. Signal modeling and classification using a robust latent space model based on t distributions. IEEE Trans. Signal Processing, 56(3):949-963, March 2008.
    • (2008) IEEE Trans. Signal Processing , vol.56 , Issue.3 , pp. 949-963
    • Chatzis, S.1    Kosmopoulos, D.2    Varvarigou, T.3
  • 4
    • 77954593787 scopus 로고    scopus 로고
    • Collaborative filtering for orkut communities: Discovery of user latent behavior
    • W. Y. Chen, J. C. Chu, J. Luan, H. Bai, Y. Wang, and E. Y. Chang. Collaborative filtering for Orkut communities: discovery of user latent behavior. In Proc. WWW'09, pages 681-690, 2009.
    • (2009) Proc. WWW'09 , pp. 681-690
    • Chen, W.Y.1    Chu, J.C.2    Luan, J.3    Bai, H.4    Wang, Y.5    Chang, E.Y.6
  • 5
    • 33749236093 scopus 로고    scopus 로고
    • Collaborative prediction using ensembles of maximum margin matrix factorizations
    • Pittsburgh, Pennsylvania, USA
    • D. DeCoste. Collaborative prediction using ensembles of maximum margin matrix factorizations. In Proc. ICML, pages 249-256, Pittsburgh, Pennsylvania, USA, 2006.
    • (2006) Proc. ICML , pp. 249-256
    • DeCoste, D.1
  • 9
    • 83055179562 scopus 로고    scopus 로고
    • Bayesian latent variable models for collaborative item rating prediction
    • M. Harvey, M. J. Carman, I. Ruthven, and F. Crestani. Bayesian latent variable models for collaborative item rating prediction. In Proc. CIKM '11, pages 699-708, 2011.
    • (2011) Proc. CIKM '11 , pp. 699-708
    • Harvey, M.1    Carman, M.J.2    Ruthven, I.3    Crestani, F.4
  • 10
    • 3042742744 scopus 로고    scopus 로고
    • Latent semantic models for collaborative filtering
    • January
    • T. Hofmann. Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst., 22(1):89-115, January 2004.
    • (2004) ACM Trans. Inf. Syst , vol.22 , Issue.1 , pp. 89-115
    • Hofmann, T.1
  • 11
    • 0000935895 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • M. Jordan, editor Kluwer, Dordrecht
    • M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. An introduction to variational methods for graphical models. In M. Jordan, editor, Learning in Graphical Models, pages 105-162. Kluwer, Dordrecht, 1998.
    • (1998) Learning in Graphical Models , pp. 105-162
    • Jordan, M.1    Ghahramani, Z.2    Jaakkola, T.3    Saul, L.4
  • 14
    • 72449152230 scopus 로고    scopus 로고
    • Fast nonparametric matrix factorization for large-scale collaborative filtering
    • Boston, MA, USA
    • K. Yu, S. Zhu, J.D. Lafferty, and Y. Gong. Fast nonparametric matrix factorization for large-scale collaborative filtering. In Proc. ACM SIGIR, pages 211-218, Boston, MA, USA, 2009.
    • (2009) Proc. ACM SIGIR , pp. 211-218
    • Yu, K.1    Zhu, S.2    Lafferty, J.D.3    Gong, Y.4
  • 15
    • 71149119166 scopus 로고    scopus 로고
    • Non-linear matrix factorization with Gaussian processes
    • Montreal, Quebec, Canada
    • N. D. Lawrence and R. Urtasun. Non-linear matrix factorization with Gaussian processes. In Proc. ICML, pages 601-608, Montreal, Quebec, Canada, 2009.
    • (2009) Proc. ICML , pp. 601-608
    • Lawrence, N.D.1    Urtasun, R.2
  • 16
    • 77951196813 scopus 로고    scopus 로고
    • Can movies and books collaborate? Cross-domain collaborative filtering for sparsity reduction
    • B. Li, Q. Yang, and X. Xue. Can movies and books collaborate? cross-domain collaborative filtering for sparsity reduction. In Proc. IJCAI 2009, pages 2052-2057.
    • (2009) Proc. IJCAI , pp. 2052-2057
    • Li, B.1    Yang, Q.2    Xue, X.3
  • 17
    • 70549113873 scopus 로고    scopus 로고
    • Transfer learning for collaborative filtering via a rating-matrix generative model
    • B. Li, Q. Yang, and X. Xue. Transfer learning for collaborative filtering via a rating-matrix generative model. In Proc. 26th ICML, 2009.
    • (2009) Proc. 26th ICML
    • Li, B.1    Yang, Q.2    Xue, X.3
  • 18
    • 70549113873 scopus 로고    scopus 로고
    • Transfer learning for collaborative filtering via a rating-matrix generative model
    • Montreal, Quebec, Canada
    • B. Li, Q. Yang, and X. Xue. Transfer learning for collaborative filtering via a rating-matrix generative model. In Proc. ICML, pages 617-624, Montreal, Quebec, Canada, 2009.
    • (2009) Proc. ICML , pp. 617-624
    • Li, B.1    Yang, Q.2    Xue, X.3
  • 20
    • 84871075003 scopus 로고    scopus 로고
    • TALMUD - Transfer learning for multiple domains
    • O. Moreno, B. Shapira, L. Rokach, and G. Shani. TALMUD - transfer learning for multiple domains. In Proc. CIKM '12, pages 425-434, 2012.
    • (2012) Proc. CIKM '12 , pp. 425-434
    • Moreno, O.1    Shapira, B.2    Rokach, L.3    Shani, G.4
  • 21
    • 4043092820 scopus 로고    scopus 로고
    • Nonparametric Bayesian data analysis
    • P. Muller and F. Quintana. Nonparametric Bayesian data analysis. Statist. Sci., 19(1):95-110, 2004.
    • (2004) Statist. Sci , vol.19 , Issue.1 , pp. 95-110
    • Muller, P.1    Quintana, F.2
  • 22
    • 80555154425 scopus 로고    scopus 로고
    • Theoretical analysis of Bayesian matrix factorization
    • S. Nakajima and M. Sugiyama. Theoretical analysis of Bayesian matrix factorization. J. Machine Learning Research, 12:2583-2648, 2011.
    • (2011) J. Machine Learning Research , vol.12 , pp. 2583-2648
    • Nakajima, S.1    Sugiyama, M.2
  • 23
    • 77958538978 scopus 로고    scopus 로고
    • Transfer learning in collaborative filtering for sparsity reduction
    • W. Pan, E. W. Xiang, N. N. Liu, and Q. Yang. Transfer learning in collaborative filtering for sparsity reduction. In Proc. AAAI, pages 230-235, 2010.
    • (2010) Proc. AAAI , pp. 230-235
    • Pan, W.1    Xiang, E.W.2    Liu, N.N.3    Yang, Q.4
  • 24
    • 85071783077 scopus 로고    scopus 로고
    • Bayesian matrix factorization with side information and dirichlet process mixtures
    • I. Porteous, A. Asuncion, and M. Welling. Bayesian matrix factorization with side information and Dirichlet process mixtures. In Proc. AAAI, 2010.
    • (2010) Proc. AAAI
    • Porteous, I.1    Asuncion, A.2    Welling, M.3
  • 25
    • 31844451557 scopus 로고    scopus 로고
    • Fast maximum margin matrix factorization for collaborative prediction
    • Bonn, Germany
    • J. D. M. Rennie and N. Srebro. Fast maximum margin matrix factorization for collaborative prediction. In Proc. ICML, pages 713-719, Bonn, Germany, 2005.
    • (2005) Proc. ICML , pp. 713-719
    • Rennie, J.D.M.1    Srebro, N.2
  • 26
  • 27
    • 84889597383 scopus 로고    scopus 로고
    • Bayesian probabilistic matrix factorization using Markov chain Monte Carlo
    • R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization using Markov chain monte carlo. In Proc. ICML'11, 2011.
    • (2011) Proc. ICML'11
    • Salakhutdinov, R.1    Mnih, A.2
  • 28
    • 65449121541 scopus 로고    scopus 로고
    • Relational learning via collective matrix factorization
    • Las Vegas, Nevada, USA
    • A. P. Singh and G. J. Gordon. Relational learning via collective matrix factorization. In Proc. 14th ACM SIGKDD, pages 650-658, Las Vegas, Nevada, USA, 2008.
    • (2008) Proc. 14th ACM SIGKDD , pp. 650-658
    • Singh, A.P.1    Gordon, G.J.2
  • 29
    • 84898932317 scopus 로고    scopus 로고
    • Maximum-margin matrix factorization
    • Vancouver, British Columbia, Canada
    • N. Srebro, J. D. M. Rennie, and T. S. Jaakkola. Maximum-margin matrix factorization. In Proc. NIPS, Volume 17, pages 1329-1336, Vancouver, British Columbia, Canada, 2005.
    • (2005) Proc. NIPS , vol.17 , pp. 1329-1336
    • Srebro, N.1    Rennie, J.D.M.2    Jaakkola, T.S.3
  • 31
    • 77956543492 scopus 로고    scopus 로고
    • Stick-breaking construction for the Indian buffet process
    • Y. W. Teh, D. Gorur, and Z. Ghahramani. Stick-breaking construction for the Indian buffet process. In Proc. AISTATS, 2007.
    • (2007) Proc. AISTATS
    • Teh, Y.W.1    Gorur, D.2    Ghahramani, Z.3
  • 34
    • 80053167162 scopus 로고    scopus 로고
    • Multi-domain collaborative filtering
    • Y. Zhang, B. Cao, and D.-Y. Yeung. Multi-domain collaborative filtering. In Proc. UAI, pages 725-732, 2010.
    • (2010) Proc. UAI , pp. 725-732
    • Zhang, Y.1    Cao, B.2    Yeung, D.-Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.