메뉴 건너뛰기




Volumn 21, Issue 6, 2016, Pages 467-476

Streptophyte Terrestrialization in Light of Plastid Evolution

Author keywords

charophytes; plastid evolution; streptophytes; terrestrialization

Indexed keywords

FRESH WATER;

EID: 84958190983     PISSN: 13601385     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tplants.2016.01.021     Document Type: Review
Times cited : (101)

References (89)
  • 1
    • 84943402350 scopus 로고    scopus 로고
    • Endosymbiosis and eukaryotic cell evolution
    • 1 Archibald, J.M., Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 25 (2015), R911–R921.
    • (2015) Curr. Biol. , vol.25 , pp. R911-R921
    • Archibald, J.M.1
  • 2
    • 84877684893 scopus 로고    scopus 로고
    • The number, speed, and impact of plastid endosymbioses in eukaryotic evolution
    • 2 Keeling, P.J., The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu. Rev. Plant Biol. 64 (2013), 583–607.
    • (2013) Annu. Rev. Plant Biol. , vol.64 , pp. 583-607
    • Keeling, P.J.1
  • 3
    • 84907959832 scopus 로고    scopus 로고
    • Endosymbiotic theory for organelle origins
    • 3 Zimorski, V., et al. Endosymbiotic theory for organelle origins. Curr. Opin. Microbiol. 22 (2014), 38–48.
    • (2014) Curr. Opin. Microbiol. , vol.22 , pp. 38-48
    • Zimorski, V.1
  • 4
    • 0020382971 scopus 로고
    • The origins of plastids
    • 4 Cavalier-Smith, T., The origins of plastids. Biol. J. Linn. Soc. 17 (1982), 289–306.
    • (1982) Biol. J. Linn. Soc. , vol.17 , pp. 289-306
    • Cavalier-Smith, T.1
  • 5
    • 22744445156 scopus 로고    scopus 로고
    • Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes
    • 5 Rodríguez-Ezpeleta, N., et al. Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr. Biol. 15 (2005), 1325–1330.
    • (2005) Curr. Biol. , vol.15 , pp. 1325-1330
    • Rodríguez-Ezpeleta, N.1
  • 6
    • 84920464914 scopus 로고    scopus 로고
    • The mitochondrial genomes of the glaucophytes Gloeochaete wittrockiana and Cyanoptyche gloeocystis: multilocus phylogenetics suggests a monophyletic Archaeplastida
    • 6 Jackson, C.J., Reyes-Prieto, A., The mitochondrial genomes of the glaucophytes Gloeochaete wittrockiana and Cyanoptyche gloeocystis: multilocus phylogenetics suggests a monophyletic Archaeplastida. Genome Biol. Evol. 6 (2014), 2774–2785.
    • (2014) Genome Biol. Evol. , vol.6 , pp. 2774-2785
    • Jackson, C.J.1    Reyes-Prieto, A.2
  • 7
    • 65349150121 scopus 로고    scopus 로고
    • Streptophyte algae and the origin of embryophytes
    • 7 Becker, B., Marin, B., Streptophyte algae and the origin of embryophytes. Ann. Bot. 103 (2009), 999–1004.
    • (2009) Ann. Bot. , vol.103 , pp. 999-1004
    • Becker, B.1    Marin, B.2
  • 8
    • 84943412492 scopus 로고    scopus 로고
    • The evolutionary origin of a terrestrial flora
    • 8 Delwiche, C.F., Cooper, E.D., The evolutionary origin of a terrestrial flora. Curr. Biol. 25 (2015), R899–R910.
    • (2015) Curr. Biol. , vol.25 , pp. R899-R910
    • Delwiche, C.F.1    Cooper, E.D.2
  • 10
    • 84875859082 scopus 로고    scopus 로고
    • Snow ball earth and the split of Streptophyta and Chlorophyta
    • 10 Becker, B., Snow ball earth and the split of Streptophyta and Chlorophyta. Trends Plant Sci. 18 (2012), 180–183.
    • (2012) Trends Plant Sci. , vol.18 , pp. 180-183
    • Becker, B.1
  • 11
    • 84908430801 scopus 로고    scopus 로고
    • Transcriptomics of desiccation tolerance in the streptophyte green alga Klebsormidium reveal a land plant-like defense reaction
    • 11 Holzinger, A., et al. Transcriptomics of desiccation tolerance in the streptophyte green alga Klebsormidium reveal a land plant-like defense reaction. PLoS ONE, 9, 2014, e110630.
    • (2014) PLoS ONE , vol.9 , pp. e110630
    • Holzinger, A.1
  • 12
    • 0028251057 scopus 로고
    • Negative gravitropism in Chara protonemata: a model integrating the opposite gravitropic responses of protonemata and rhizoids
    • 12 Hodick, D., Negative gravitropism in Chara protonemata: a model integrating the opposite gravitropic responses of protonemata and rhizoids. Planta 195 (1994), 43–49.
    • (1994) Planta , vol.195 , pp. 43-49
    • Hodick, D.1
  • 13
    • 84864632605 scopus 로고    scopus 로고
    • Phylogenetic analyses and morphological innovations in land plants
    • 13 Doyle, J.A., Phylogenetic analyses and morphological innovations in land plants. Ann. Plant Rev. 45 (2013), 1–50.
    • (2013) Ann. Plant Rev. , vol.45 , pp. 1-50
    • Doyle, J.A.1
  • 14
    • 84858379503 scopus 로고    scopus 로고
    • Aeroterrestrial Coleochaete (Streptophyta, Coleochaetales) models early plant adaptation to land
    • 14 Graham, L.E., et al. Aeroterrestrial Coleochaete (Streptophyta, Coleochaetales) models early plant adaptation to land. Am. J. Bot. 99 (2012), 130–144.
    • (2012) Am. J. Bot. , vol.99 , pp. 130-144
    • Graham, L.E.1
  • 15
    • 84887821109 scopus 로고    scopus 로고
    • Evolution of photoprotection mechanisms upon land colonization: evidence of PSBS-dependent NPQ in late Streptophyte algae
    • 15 Gerotto, C., Morosinotto, T., Evolution of photoprotection mechanisms upon land colonization: evidence of PSBS-dependent NPQ in late Streptophyte algae. Physiol. Plant 149 (2013), 583–598.
    • (2013) Physiol. Plant , vol.149 , pp. 583-598
    • Gerotto, C.1    Morosinotto, T.2
  • 16
    • 0031914668 scopus 로고    scopus 로고
    • The land flora: a phototroph–fungus partnership?
    • 16 Selosse, M.A., Le Tacon, F., The land flora: a phototroph–fungus partnership?. Trends Ecol. Evol. 13 (1998), 15–20.
    • (1998) Trends Ecol. Evol. , vol.13 , pp. 15-20
    • Selosse, M.A.1    Le Tacon, F.2
  • 17
    • 84945402783 scopus 로고    scopus 로고
    • Algal ancestor of land plants was preadapted for symbiosis
    • 17 Delaux, P-M., et al. Algal ancestor of land plants was preadapted for symbiosis. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), 13390–13395.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. 13390-13395
    • Delaux, P.-M.1
  • 18
    • 84901711172 scopus 로고    scopus 로고
    • Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation
    • 18 Hori, K., et al. Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation. Nat. Commun., 5, 2014, 3978.
    • (2014) Nat. Commun. , vol.5 , pp. 3978
    • Hori, K.1
  • 19
    • 84940917099 scopus 로고    scopus 로고
    • Conservation of ethylene as a plant hormone over 450 million years of evolution
    • 19 Ju, C., et al. Conservation of ethylene as a plant hormone over 450 million years of evolution. Nat. Plants, 1, 2015, 14004.
    • (2015) Nat. Plants , vol.1 , pp. 14004
    • Ju, C.1
  • 20
    • 84958055274 scopus 로고    scopus 로고
    • Why plants were terrestrial from the beginning
    • 20 Hartholt, J., et al. Why plants were terrestrial from the beginning. Trends Plant Sci. 21 (2016), 96–101.
    • (2016) Trends Plant Sci. , vol.21 , pp. 96-101
    • Hartholt, J.1
  • 21
    • 84910652240 scopus 로고    scopus 로고
    • Plant and algal cell walls: diversity and functionality
    • 21 Popper, Z.A., et al. Plant and algal cell walls: diversity and functionality. Ann. Bot. 114 (2014), 1043–1048.
    • (2014) Ann. Bot. , vol.114 , pp. 1043-1048
    • Popper, Z.A.1
  • 22
    • 58349086956 scopus 로고    scopus 로고
    • Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture
    • 22 Martone, P.T., et al. Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr. Biol. 19 (2009), 169–175.
    • (2009) Curr. Biol. , vol.19 , pp. 169-175
    • Martone, P.T.1
  • 23
    • 0037143760 scopus 로고    scopus 로고
    • The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum: insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants
    • 23 Turmel, M., et al. The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum: insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants. Proc. Natl. Acad. Sci. U.S.A. 99 (2002), 11275–11280.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 11275-11280
    • Turmel, M.1
  • 24
    • 33646890404 scopus 로고    scopus 로고
    • The chloroplast genome sequence of Chara vulgaris sheds new light into the closest green algal relatives of land plants
    • 24 Turmel, M., The chloroplast genome sequence of Chara vulgaris sheds new light into the closest green algal relatives of land plants. Mol. Biol. Evol. 23 (2006), 1324–1338.
    • (2006) Mol. Biol. Evol. , vol.23 , pp. 1324-1338
    • Turmel, M.1
  • 25
    • 84897584050 scopus 로고    scopus 로고
    • From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes
    • 25 Ruhfel, B.R., et al. From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol. Biol., 14, 2014, 23.
    • (2014) BMC Evol. Biol. , vol.14 , pp. 23
    • Ruhfel, B.R.1
  • 26
    • 84902994618 scopus 로고    scopus 로고
    • Analyses of charophyte chloroplast genomes help characterize the ancestral chloroplast genome of land plants
    • 26 Civáň, P., et al. Analyses of charophyte chloroplast genomes help characterize the ancestral chloroplast genome of land plants. Genome Biol. Evol. 6 (2014), 897–911.
    • (2014) Genome Biol. Evol. , vol.6 , pp. 897-911
    • Civáň, P.1
  • 27
    • 84909619344 scopus 로고    scopus 로고
    • Phylotranscriptomic analysis of the origin and early diversification of land plants
    • 27 Wickett, N.J., et al. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc. Natl. Acad. Sci. U.S.A. 111 (2014), E4859–E4868.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. E4859-E4868
    • Wickett, N.J.1
  • 28
    • 84891816782 scopus 로고    scopus 로고
    • Streptophyte algae and the origin of land plants revisited using heterogeneous models with three new algal chloroplast genomes
    • 28 Zhong, B., et al. Streptophyte algae and the origin of land plants revisited using heterogeneous models with three new algal chloroplast genomes. Mol. Biol. Evol. 31 (2014), 177–183.
    • (2014) Mol. Biol. Evol. , vol.31 , pp. 177-183
    • Zhong, B.1
  • 29
    • 0742323538 scopus 로고    scopus 로고
    • Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes
    • 29 Timmis, J.N., et al. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat. Rev. Genet. 5 (2004), 123–135.
    • (2004) Nat. Rev. Genet. , vol.5 , pp. 123-135
    • Timmis, J.N.1
  • 30
    • 84939838765 scopus 로고    scopus 로고
    • Why chloroplasts and mitochondria retain their own genomes and genetic systems: colocation for redox regulation of gene expression
    • 30 Allen, J.F., Why chloroplasts and mitochondria retain their own genomes and genetic systems: colocation for redox regulation of gene expression. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), 10231–10238.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. 10231-10238
    • Allen, J.F.1
  • 31
    • 80054790355 scopus 로고    scopus 로고
    • A structural phylogenetic map for chloroplast photosynthesis
    • 31 Allen, J.F., et al. A structural phylogenetic map for chloroplast photosynthesis. Trends Plant Sci. 16 (2011), 645–655.
    • (2011) Trends Plant Sci. , vol.16 , pp. 645-655
    • Allen, J.F.1
  • 32
    • 79957927000 scopus 로고    scopus 로고
    • The evolution of the plastid chromosome in land plants: gene content, gene order, gene function
    • 32 Wicke, S., et al. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol. Biol. 76 (2011), 273–297.
    • (2011) Plant Mol. Biol. , vol.76 , pp. 273-297
    • Wicke, S.1
  • 33
    • 84892548302 scopus 로고    scopus 로고
    • Is ftsH the key to plastid longevity in sacoglossan slugs?
    • 33 de Vries, J., et al. Is ftsH the key to plastid longevity in sacoglossan slugs?. Genome Biol. Evol. 5 (2013), 2540–2548.
    • (2013) Genome Biol. Evol. , vol.5 , pp. 2540-2548
    • de Vries, J.1
  • 34
    • 84938881118 scopus 로고    scopus 로고
    • YCF1: a green TIC?
    • 34 de Vries, J., et al. YCF1: a green TIC?. Plant Cell 27 (2015), 1827–1833.
    • (2015) Plant Cell , vol.27 , pp. 1827-1833
    • de Vries, J.1
  • 35
    • 0025025422 scopus 로고
    • Different fates of the chloroplast tufA gene following its transfer to the nucleus in green algae
    • 35 Baldauf, S.L., et al. Different fates of the chloroplast tufA gene following its transfer to the nucleus in green algae. Proc. Natl. Acad. Sci. U.S.A. 87 (1990), 5317–5321.
    • (1990) Proc. Natl. Acad. Sci. U.S.A. , vol.87 , pp. 5317-5321
    • Baldauf, S.L.1
  • 36
    • 0015319592 scopus 로고
    • The biologic clock: the mitochondria?
    • 36 Harman, D., The biologic clock: the mitochondria?. J. Am. Geriatr. Soc. 20 (1972), 145–147.
    • (1972) J. Am. Geriatr. Soc. , vol.20 , pp. 145-147
    • Harman, D.1
  • 37
    • 0031032817 scopus 로고    scopus 로고
    • Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress
    • 37 Yakes, F.M., VanHouten, B., Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc. Natl. Acad. Sci. U.S.A. 94 (1997), 514–519.
    • (1997) Proc. Natl. Acad. Sci. U.S.A. , vol.94 , pp. 514-519
    • Yakes, F.M.1    VanHouten, B.2
  • 38
    • 0027199986 scopus 로고
    • Photoinhibition of photosystem II. Inactivation, protein damage and turnover
    • 38 Aro, E-M., et al. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim. Biophys. Acta 1143 (1993), 113–134.
    • (1993) Biochim. Biophys. Acta , vol.1143 , pp. 113-134
    • Aro, E.-M.1
  • 39
    • 84982371146 scopus 로고
    • Light adaptation by marine phytoplankton
    • 39 Ryther, J.H., Menzel, D.W., Light adaptation by marine phytoplankton. Limnol. Oceanogr. 4 (1959), 492–497.
    • (1959) Limnol. Oceanogr. , vol.4 , pp. 492-497
    • Ryther, J.H.1    Menzel, D.W.2
  • 40
    • 33748803625 scopus 로고    scopus 로고
    • The evolution of chloroplast RNA editing
    • 40 Tillich, M., et al. The evolution of chloroplast RNA editing. Mol. Biol. Evol. 23 (2006), 1912–1921.
    • (2006) Mol. Biol. Evol. , vol.23 , pp. 1912-1921
    • Tillich, M.1
  • 41
    • 77954143469 scopus 로고    scopus 로고
    • Plant physiology and biochemistry
    • 41 Martín, M., Sabater, B., Plant physiology and biochemistry. Plant Physiol. Biochem. 48 (2010), 636–645.
    • (2010) Plant Physiol. Biochem. , vol.48 , pp. 636-645
    • Martín, M.1    Sabater, B.2
  • 42
    • 33750993214 scopus 로고    scopus 로고
    • Organ specific analysis of the anaerobic primary metabolism in rice and wheat seedlings II: light exposure reduces needs for fermentation and extends survival during anaerobiosis
    • 42 Mustroph, A., et al. Organ specific analysis of the anaerobic primary metabolism in rice and wheat seedlings II: light exposure reduces needs for fermentation and extends survival during anaerobiosis. Planta 225 (2006), 139–152.
    • (2006) Planta , vol.225 , pp. 139-152
    • Mustroph, A.1
  • 43
    • 0032516147 scopus 로고    scopus 로고
    • gene transfer to the nucleus and the evolution of chloroplasts
    • 43 Martin, W.F., et al. gene transfer to the nucleus and the evolution of chloroplasts. Nature 393 (1998), 162–165.
    • (1998) Nature , vol.393 , pp. 162-165
    • Martin, W.F.1
  • 44
    • 10744227834 scopus 로고    scopus 로고
    • Identification of Arabidopsis genes regulated by high light–stress using cDNA Microarray
    • 44 Kimura, M., et al. Identification of Arabidopsis genes regulated by high light–stress using cDNA Microarray. Photochem. Photobiol. 77 (2003), 226–233.
    • (2003) Photochem. Photobiol. , vol.77 , pp. 226-233
    • Kimura, M.1
  • 45
    • 84946062684 scopus 로고    scopus 로고
    • Desiccation tolerance in the streptophyte green alga Klebsormidium: the role of phytohormones
    • 45 Holzinger, A., Becker, B., Desiccation tolerance in the streptophyte green alga Klebsormidium: the role of phytohormones. Commun. Integr. Biol., 8, 2015, e1059978.
    • (2015) Commun. Integr. Biol. , vol.8 , pp. e1059978
    • Holzinger, A.1    Becker, B.2
  • 46
    • 84903557267 scopus 로고    scopus 로고
    • Meta-analysis of retrograde signaling in Arabidopsis thaliana reveals a core module of genes embedded in complex cellular signaling networks
    • 46 Gläßer, C., et al. Meta-analysis of retrograde signaling in Arabidopsis thaliana reveals a core module of genes embedded in complex cellular signaling networks. Mol. Plant 7 (2014), 1167–1190.
    • (2014) Mol. Plant , vol.7 , pp. 1167-1190
    • Gläßer, C.1
  • 47
    • 77649268964 scopus 로고    scopus 로고
    • Bacterial translation elongation factor EF-Tu interacts and colocalizes with actin-like MreB protein
    • 47 Defeu Soufo, H.J., et al. Bacterial translation elongation factor EF-Tu interacts and colocalizes with actin-like MreB protein. Proc. Natl. Acad. Sci. U.S.A. 107 (2010), 3163–3168.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 3163-3168
    • Defeu Soufo, H.J.1
  • 48
    • 2942588534 scopus 로고    scopus 로고
    • An actin-like gene can determine cell polarity in bacteria
    • 48 Gitai, Z., et al. An actin-like gene can determine cell polarity in bacteria. Proc. Natl. Acad. Sci. U.S.A. 101 (2004), 8643–8648.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 8643-8648
    • Gitai, Z.1
  • 49
    • 84880238403 scopus 로고    scopus 로고
    • Direct interaction of FtsZ and MreB is required for septum synthesis and cell division in Escherichia coli
    • 49 Fenton, A.K., Gerdes, K., Direct interaction of FtsZ and MreB is required for septum synthesis and cell division in Escherichia coli. EMBO J. 32 (2013), 1953–1965.
    • (2013) EMBO J. , vol.32 , pp. 1953-1965
    • Fenton, A.K.1    Gerdes, K.2
  • 50
    • 79960094103 scopus 로고    scopus 로고
    • Correlation between nuclear plastid DNA abundance and plastid number supports the limited transfer window hypothesis
    • 50 Smith, D.R., et al. Correlation between nuclear plastid DNA abundance and plastid number supports the limited transfer window hypothesis. Genome Biol. Evol. 3 (2011), 365–371.
    • (2011) Genome Biol. Evol. , vol.3 , pp. 365-371
    • Smith, D.R.1
  • 51
    • 78649636987 scopus 로고    scopus 로고
    • Chloroplast division: squeezing the photosynthetic captive
    • 51 Miyagishima, S-Y., Kabeya, Y., Chloroplast division: squeezing the photosynthetic captive. Curr. Opin. Microbiol. 13 (2010), 738–746.
    • (2010) Curr. Opin. Microbiol. , vol.13 , pp. 738-746
    • Miyagishima, S.-Y.1    Kabeya, Y.2
  • 52
    • 42249101576 scopus 로고    scopus 로고
    • Inter- and intraspecific relationships between nuclear DNA content and cell size in selected members of the centric diatom genus Thalassiosira (Bacillariophyceae)
    • 52 von Dassow, P., et al. Inter- and intraspecific relationships between nuclear DNA content and cell size in selected members of the centric diatom genus Thalassiosira (Bacillariophyceae). J. Phycol. 44 (2008), 335–349.
    • (2008) J. Phycol. , vol.44 , pp. 335-349
    • von Dassow, P.1
  • 53
    • 72049108532 scopus 로고    scopus 로고
    • Algae
    • Benjamin Cummings
    • 53 Graham, L.E., et al. Algae. 2009, Benjamin Cummings.
    • (2009)
    • Graham, L.E.1
  • 54
    • 84986977076 scopus 로고
    • The anthocerote chloroplast – a review
    • 54 Vaughn, K.C., et al. The anthocerote chloroplast – a review. New Phytol. 120 (1992), 169–190.
    • (1992) New Phytol. , vol.120 , pp. 169-190
    • Vaughn, K.C.1
  • 55
    • 0000012654 scopus 로고
    • Lignin-like compounds and sporopollenin in Coleaochaete, an algal model for land plant ancestry
    • 55 Delwiche, C.F., et al. Lignin-like compounds and sporopollenin in Coleaochaete, an algal model for land plant ancestry. Science 245 (1989), 399–401.
    • (1989) Science , vol.245 , pp. 399-401
    • Delwiche, C.F.1
  • 56
    • 84888360060 scopus 로고    scopus 로고
    • Biogenesis and homeostasis of chloroplasts and other plastids
    • 56 Jarvis, P., López-Juez, E., Biogenesis and homeostasis of chloroplasts and other plastids. Nat. Rev. Mol. Cell Biol. 14 (2013), 787–802.
    • (2013) Nat. Rev. Mol. Cell Biol. , vol.14 , pp. 787-802
    • Jarvis, P.1    López-Juez, E.2
  • 57
    • 70349439088 scopus 로고    scopus 로고
    • Challenges to our current view on chloroplasts
    • 57 Reski, R., Challenges to our current view on chloroplasts. Biol. Chem. 390 (2009), 731–738.
    • (2009) Biol. Chem. , vol.390 , pp. 731-738
    • Reski, R.1
  • 58
    • 84982653268 scopus 로고
    • Chloroplast development in Azolla roots
    • 58 Whatley, J.M., Gunning, B.E.S., Chloroplast development in Azolla roots. New Phytol. 89 (1981), 129–138.
    • (1981) New Phytol. , vol.89 , pp. 129-138
    • Whatley, J.M.1    Gunning, B.E.S.2
  • 59
    • 77956638464 scopus 로고    scopus 로고
    • The evolution of the regulatory mechanism of chloroplast division
    • 59 Okazaki, K., et al. The evolution of the regulatory mechanism of chloroplast division. Plant Signal. Behav. 5 (2010), 164–167.
    • (2010) Plant Signal. Behav. , vol.5 , pp. 164-167
    • Okazaki, K.1
  • 60
    • 79953715968 scopus 로고    scopus 로고
    • Mechanism of plastid division: from bacterium to an organelle
    • 60 Miyagishima, S-Y., Mechanism of plastid division: from bacterium to an organelle. Plant Phys. 155 (2011), 1533–1544.
    • (2011) Plant Phys. , vol.155 , pp. 1533-1544
    • Miyagishima, S.-Y.1
  • 61
    • 84875853780 scopus 로고    scopus 로고
    • Essential nucleoid proteins in early chloroplast development
    • 61 Pfalz, J., Pfannschmidt, T., Essential nucleoid proteins in early chloroplast development. Trends Plant Sci. 18 (2013), 186–194.
    • (2013) Trends Plant Sci. , vol.18 , pp. 186-194
    • Pfalz, J.1    Pfannschmidt, T.2
  • 62
    • 84963504364 scopus 로고    scopus 로고
    • Plastid RNA polymerases: orchestration of enzymes with different evolutionary origins controls chloroplast biogenesis during the plant life cycle
    • 62 Pfannschmidt, T., et al. Plastid RNA polymerases: orchestration of enzymes with different evolutionary origins controls chloroplast biogenesis during the plant life cycle. J. Exp. Bot. 66 (2015), 6957–6973.
    • (2015) J. Exp. Bot. , vol.66 , pp. 6957-6973
    • Pfannschmidt, T.1
  • 63
    • 84931571769 scopus 로고    scopus 로고
    • Chloroplast RNA polymerases: role in chloroplast biogenesis
    • 63 Börner, T., et al. Chloroplast RNA polymerases: role in chloroplast biogenesis. Biochim. Biophys. Acta 1847 (2015), 761–769.
    • (2015) Biochim. Biophys. Acta , vol.1847 , pp. 761-769
    • Börner, T.1
  • 64
    • 33745932065 scopus 로고    scopus 로고
    • The SCABRA3 nuclear gene encodes the plastid RpoTp RNA polymerase, which is required for chloroplast biogenesis and mesophyll cell proliferation in Arabidopsis
    • 64 Hricová, A., et al. The SCABRA3 nuclear gene encodes the plastid RpoTp RNA polymerase, which is required for chloroplast biogenesis and mesophyll cell proliferation in Arabidopsis. Plant Phys. 141 (2006), 942–956.
    • (2006) Plant Phys. , vol.141 , pp. 942-956
    • Hricová, A.1
  • 65
    • 79958769961 scopus 로고    scopus 로고
    • The transcription machineries of plant mitochondria and chloroplasts: composition, function, and regulation
    • 65 Liere, K., et al. The transcription machineries of plant mitochondria and chloroplasts: composition, function, and regulation. J. Plant Phys. 168 (2011), 1345–1360.
    • (2011) J. Plant Phys. , vol.168 , pp. 1345-1360
    • Liere, K.1
  • 66
    • 84876521762 scopus 로고    scopus 로고
    • Genomes of stigonematalean cyanobacteria (subsection V) and the evolution of oxygenic photosynthesis from prokaryotes to plastids
    • 66 Dagan, T., et al. Genomes of stigonematalean cyanobacteria (subsection V) and the evolution of oxygenic photosynthesis from prokaryotes to plastids. Genome Biol. Evol. 5 (2013), 31–44.
    • (2013) Genome Biol. Evol. , vol.5 , pp. 31-44
    • Dagan, T.1
  • 67
    • 84920431380 scopus 로고    scopus 로고
    • Paulinella chromatophora – rethinking the transition from endosymbiont to organelle
    • 67 Nowack, E.C.M., Paulinella chromatophora – rethinking the transition from endosymbiont to organelle. Acta Soc. Bot. Pol. 83 (2014), 387–397.
    • (2014) Acta Soc. Bot. Pol. , vol.83 , pp. 387-397
    • Nowack, E.C.M.1
  • 68
    • 0002160837 scopus 로고    scopus 로고
    • Gene transfer from organelles to the nucleus: how much, what happens, and why?
    • 68 Martin, W.F., Herrmann, R.G., Gene transfer from organelles to the nucleus: how much, what happens, and why?. Plant Physiol. 118 (1998), 9–17.
    • (1998) Plant Physiol. , vol.118 , pp. 9-17
    • Martin, W.F.1    Herrmann, R.G.2
  • 69
    • 84901060464 scopus 로고    scopus 로고
    • Recent advances in the study of chloroplast gene expression and its evolution
    • 69 Yagi, Y., Shiina, T., Recent advances in the study of chloroplast gene expression and its evolution. Front. Plant Sci., 5, 2014, 61.
    • (2014) Front. Plant Sci. , vol.5 , pp. 61
    • Yagi, Y.1    Shiina, T.2
  • 70
    • 53149139334 scopus 로고    scopus 로고
    • Complex chloroplast RNA metabolism: just debugging the genetic programme?
    • 70 Maier, U.G., et al. Complex chloroplast RNA metabolism: just debugging the genetic programme?. BMC Biol., 6, 2008, 36.
    • (2008) BMC Biol. , vol.6 , pp. 36
    • Maier, U.G.1
  • 71
    • 69249158700 scopus 로고    scopus 로고
    • PARC6, a novel chloroplast division factor, influences FtsZ assembly and is required for recruitment of PDV1 during chloroplast division in Arabidopsis
    • 71 Glynn, J.M., et al. PARC6, a novel chloroplast division factor, influences FtsZ assembly and is required for recruitment of PDV1 during chloroplast division in Arabidopsis. Plant J. 59 (2009), 700–711.
    • (2009) Plant J. , vol.59 , pp. 700-711
    • Glynn, J.M.1
  • 72
    • 0034712758 scopus 로고    scopus 로고
    • The origin of plants: body plan changes contributing to a major evolutionary radiation
    • 72 Graham, L.E., et al. The origin of plants: body plan changes contributing to a major evolutionary radiation. Proc. Natl. Acad. Sci. U.S.A. 97 (2000), 4535–4540.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 4535-4540
    • Graham, L.E.1
  • 73
    • 0033784751 scopus 로고    scopus 로고
    • Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes
    • 73 Butterfield, N.J., Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26 (2000), 386–404.
    • (2000) Paleobiology , vol.26 , pp. 386-404
    • Butterfield, N.J.1
  • 74
    • 81355160990 scopus 로고    scopus 로고
    • Diversification of land plants: insights from a family-level phylogenetic analysis
    • 74 Fiz-Palacios, O., et al. Diversification of land plants: insights from a family-level phylogenetic analysis. BMC Evol. Biol., 11, 2011, 341.
    • (2011) BMC Evol. Biol. , vol.11 , pp. 341
    • Fiz-Palacios, O.1
  • 75
    • 80052019696 scopus 로고    scopus 로고
    • Estimating the timing of early eukaryotic diversification with multigene molecular clocks
    • 75 Parfrey, L.W., et al. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl. Acad. Sci. U.S.A. 108 (2011), 13624–13629.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 13624-13629
    • Parfrey, L.W.1
  • 76
    • 84874944769 scopus 로고    scopus 로고
    • Conservative sorting in the muroplasts of Cyanophora paradoxa: a reevaluation based on the completed genome sequence
    • 76 Steiner, J.M., et al. Conservative sorting in the muroplasts of Cyanophora paradoxa: a reevaluation based on the completed genome sequence. Symbiosis 58 (2012), 127–133.
    • (2012) Symbiosis , vol.58 , pp. 127-133
    • Steiner, J.M.1
  • 77
    • 0034930762 scopus 로고    scopus 로고
    • The unique features of starch metabolism in red algae
    • 77 Viola, R., et al. The unique features of starch metabolism in red algae. Proc. R. Soc. B 268 (2001), 1417–1422.
    • (2001) Proc. R. Soc. B , vol.268 , pp. 1417-1422
    • Viola, R.1
  • 78
    • 84867206822 scopus 로고    scopus 로고
    • How many species of algae are there?
    • 78 Guiry, M.D., How many species of algae are there?. J. Phycol. 48 (2012), 1057–1063.
    • (2012) J. Phycol. , vol.48 , pp. 1057-1063
    • Guiry, M.D.1
  • 79
    • 0033536171 scopus 로고    scopus 로고
    • Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts
    • 79 Tomitani, A., et al. Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts. Nature 400 (1999), 159–162.
    • (1999) Nature , vol.400 , pp. 159-162
    • Tomitani, A.1
  • 80
    • 84931087984 scopus 로고    scopus 로고
    • Protein import and the origin of red complex plastids
    • 80 Gould, S.B., et al. Protein import and the origin of red complex plastids. Curr. Biol. 25 (2015), R515–R521.
    • (2015) Curr. Biol. , vol.25 , pp. R515-R521
    • Gould, S.B.1
  • 81
    • 0001030798 scopus 로고
    • The chloroplasts of Euglena may have evolved from symbiotic green algae
    • 81 Gibbs, S.P., The chloroplasts of Euglena may have evolved from symbiotic green algae. Can. J. Bot. 56 (1978), 2883–2889.
    • (1978) Can. J. Bot. , vol.56 , pp. 2883-2889
    • Gibbs, S.P.1
  • 82
    • 84926522901 scopus 로고    scopus 로고
    • When the lights go out: the evolutionary fate of free-living colorless green algae
    • 82 Figueroa-Martinez, F., et al. When the lights go out: the evolutionary fate of free-living colorless green algae. New. Phytol. 206 (2015), 972–982.
    • (2015) New. Phytol. , vol.206 , pp. 972-982
    • Figueroa-Martinez, F.1
  • 83
    • 80255134483 scopus 로고    scopus 로고
    • The apicoplast
    • 83 McFadden, G.I., The apicoplast. Protoplasma 248 (2011), 641–650.
    • (2011) Protoplasma , vol.248 , pp. 641-650
    • McFadden, G.I.1
  • 84
    • 84871834998 scopus 로고    scopus 로고
    • Transcriptome analysis of foraminiferan Elphidium margaritaceum questions the role of gene transfer in kleptoplastidy
    • 84 Pillet, L., Pawlowski, J., Transcriptome analysis of foraminiferan Elphidium margaritaceum questions the role of gene transfer in kleptoplastidy. Mol. Biol. Evol. 30 (2012), 66–76.
    • (2012) Mol. Biol. Evol. , vol.30 , pp. 66-76
    • Pillet, L.1    Pawlowski, J.2
  • 85
    • 84901631863 scopus 로고    scopus 로고
    • Plastid survival in the cytosol of animal cells
    • 85 de Vries, J., et al. Plastid survival in the cytosol of animal cells. Trends Plant Sci. 19 (2014), 347–350.
    • (2014) Trends Plant Sci. , vol.19 , pp. 347-350
    • de Vries, J.1
  • 86
    • 84898715307 scopus 로고    scopus 로고
    • A plastid without a genome: evidence from the nonphotosynthetic green algal genus Polytomella
    • 86 Smith, D.R., Lee, R.W., A plastid without a genome: evidence from the nonphotosynthetic green algal genus Polytomella. Plant Physiol. 164 (2014), 1812–1819.
    • (2014) Plant Physiol. , vol.164 , pp. 1812-1819
    • Smith, D.R.1    Lee, R.W.2
  • 87
    • 84928923352 scopus 로고    scopus 로고
    • Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate
    • 87 Gornik, S.G., et al. Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), 5767–5772.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. 5767-5772
    • Gornik, S.G.1
  • 88
    • 0033621040 scopus 로고    scopus 로고
    • The complete chloroplast DNA sequence of the green alga Nephroselmis olivacea: insights into the architecture of ancestral chloroplast genomes
    • 88 Turmel, M., et al. The complete chloroplast DNA sequence of the green alga Nephroselmis olivacea: insights into the architecture of ancestral chloroplast genomes. Proc. Natl. Acad. Sci. U.S.A. 96 (1999), 10248–10253.
    • (1999) Proc. Natl. Acad. Sci. U.S.A. , vol.96 , pp. 10248-10253
    • Turmel, M.1
  • 89
    • 72649103962 scopus 로고    scopus 로고
    • The peptidoglycan biosynthesis genes MurA and MraY are related to chloroplast division in the moss Physcomitrella patens
    • 89 Homi, S., et al. The peptidoglycan biosynthesis genes MurA and MraY are related to chloroplast division in the moss Physcomitrella patens. Plant Cell Physiol. 50 (2009), 2047–2056.
    • (2009) Plant Cell Physiol. , vol.50 , pp. 2047-2056
    • Homi, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.