메뉴 건너뛰기




Volumn 4, Issue DECEMBER2015, 2015, Pages

ABHD17 proteins are novel protein depalmitoylases that regulate N-Ras palmitate turnover and subcellular localization

Author keywords

[No Author keywords available]

Indexed keywords

ABHD17 PROTEIN; ACYL PROTEIN THIOESTERASE 1; ACYL PROTEIN THIOESTERASE 2; CYSTEINE; DEPALMITOYLASE; ENZYME; ENZYME INHIBITOR; PALMITIC ACID; PALMOSTATIN B; POSTSYNAPTIC DENSITY PROTEIN 95; RAS PROTEIN; SMALL INTERFERING RNA; THIOL ESTER HYDROLASE; UNCLASSIFIED DRUG; DLG4 PROTEIN, HUMAN; GUANOSINE TRIPHOSPHATASE; MEMBRANE PROTEIN; NRAS PROTEIN, HUMAN; PALMITIC ACID DERIVATIVE; SIGNAL PEPTIDE;

EID: 84956877118     PISSN: None     EISSN: 2050084X     Source Type: Journal    
DOI: 10.7554/eLife.11306     Document Type: Article
Times cited : (224)

References (43)
  • 2
    • 84929441381 scopus 로고    scopus 로고
    • H-ras distribution and signaling in plasma membrane microdomains are regulated by acylation and deacylation events
    • Agudo-Ibáñ ez L, Herrero A, Barbacid M, Crespo P. 2015. H-ras distribution and signaling in plasma membrane microdomains are regulated by acylation and deacylation events. Molecular and Cellular Biology 35:1898–1914. doi: 10.1128/MCB.01398-14.
    • (2015) Molecular and Cellular Biology , vol.35 , pp. 1898-1914
    • Agudo-Ibáñez, L.1    Herrero, A.2    Barbacid, M.3    Crespo, P.4
  • 4
    • 78651087378 scopus 로고    scopus 로고
    • Myosin VI and its binding partner optineurin are involved in secretory vesicle fusion at the plasma membrane
    • Bond LM, Peden AA, Kendrick-Jones J, Sellers JR, Buss F. 2011. Myosin VI and its binding partner optineurin are involved in secretory vesicle fusion at the plasma membrane. Molecular Biology of the Cell 22:54–65. doi: 10.1091/mbc.E10-06-0553.
    • (2011) Molecular Biology of the Cell , vol.22 , pp. 54-65
    • Bond, L.M.1    Peden, A.A.2    Kendrick-Jones, J.3    Sellers, J.R.4    Buss, F.5
  • 6
    • 78649734941 scopus 로고    scopus 로고
    • Palmitoylation and depalmitoylation dynamics at a glance
    • Conibear E, Davis NG. 2010. Palmitoylation and depalmitoylation dynamics at a glance. Journal of Cell Science 123:4007–4010. doi: 10.1242/jcs.059287.
    • (2010) Journal of Cell Science , vol.123 , pp. 4007-4010
    • Conibear, E.1    Davis, N.G.2
  • 7
    • 84895096129 scopus 로고    scopus 로고
    • Acyl protein thioesterase inhibitors as probes of dynamic s-palmitoylation. Med
    • Davda D, Martin BR. 2014. Acyl protein thioesterase inhibitors as probes of dynamic s-palmitoylation. Med. Chem. Commun. 5:268–276. doi: 10.1039/C3MD00333G.
    • (2014) Chem. Commun , vol.5 , pp. 268-276
    • Davda, D.1    Martin, B.R.2
  • 8
    • 0027340389 scopus 로고
    • Increased palmitoylation of the gs protein alpha subunit after activation by the beta-adrenergic receptor or cholera toxin
    • Degtyarev MY, Spiegel AM, Jones TL. 1993. Increased palmitoylation of the gs protein alpha subunit after activation by the beta-adrenergic receptor or cholera toxin. The Journal of Biological Chemistry 268:23769–23772.
    • (1993) The Journal of Biological Chemistry , vol.268 , pp. 23769-23772
    • Degtyarev, M.Y.1    Spiegel, A.M.2    Jones, T.L.3
  • 10
    • 0032546946 scopus 로고    scopus 로고
    • A cytoplasmic acyl-protein thioesterase that removes palmitate from g protein alpha subunits and p21RAS
    • Duncan JA, Gilman AG. 1998. A cytoplasmic acyl-protein thioesterase that removes palmitate from g protein alpha subunits and p21RAS. Journal of Biological Chemistry 273:15830–15837. doi: 10.1074/jbc.273.25.15830.
    • (1998) Journal of Biological Chemistry , vol.273 , pp. 15830-15837
    • Duncan, J.A.1    Gilman, A.G.2
  • 14
    • 79955649200 scopus 로고    scopus 로고
    • DHHC palmitoyl transferases: Substrate interactions and (patho)physiology
    • Greaves J, Chamberlain LH. 2011. DHHC palmitoyl transferases: Substrate interactions and (patho)physiology. Trends in Biochemical Sciences 36:245–253. doi: 10.1016/j.tibs.2011.01.003.
    • (2011) Trends in Biochemical Sciences , vol.36 , pp. 245-253
    • Greaves, J.1    Chamberlain, L.H.2
  • 15
    • 79953143263 scopus 로고    scopus 로고
    • Differential palmitoylation regulates intracellular patterning of SNAP25
    • Greaves J, Chamberlain LH. 2011. Differential palmitoylation regulates intracellular patterning of SNAP25. Journal of Cell Science 124:1351–1360. doi: 10.1242/jcs.079095.
    • (2011) Journal of Cell Science , vol.124 , pp. 1351-1360
    • Greaves, J.1    Chamberlain, L.H.2
  • 16
    • 55249111745 scopus 로고    scopus 로고
    • Selectivity of inhibitors of endocannabinoid biosynthesis evaluated by activity-based protein profiling
    • Hoover HS, Blankman JL, Niessen S, Cravatt BF. 2008. Selectivity of inhibitors of endocannabinoid biosynthesis evaluated by activity-based protein profiling. Bioorganic & Medicinal Chemistry Letters 18:5838–5841. doi: 10.1016/j.bmcl.2008.06.091.
    • (2008) Bioorganic & Medicinal Chemistry Letters , vol.18 , pp. 5838-5841
    • Hoover, H.S.1    Blankman, J.L.2    Niessen, S.3    Cravatt, B.F.4
  • 19
    • 0035799319 scopus 로고    scopus 로고
    • Profiling serine hydrolase activities in complex proteomes †
    • Kidd D, Liu Y, Cravatt BF. 2001. Profiling serine hydrolase activities in complex proteomes † . Biochemistry 40: 4005–4015. doi: 10.1021/bi002579j.
    • (2001) Biochemistry , vol.40 , pp. 4005-4015
    • Kidd, D.1    Liu, Y.2    Cravatt, B.F.3
  • 21
    • 34547789923 scopus 로고    scopus 로고
    • A functional proteomic strategy to discover inhibitors for uncharacterized hydrolases
    • Li W, Blankman JL, Cravatt BF. 2007. A functional proteomic strategy to discover inhibitors for uncharacterized hydrolases. Journal of the American Chemical Society 129:9594–9595. doi: 10.1021/ja073650c.
    • (2007) Journal of the American Chemical Society , vol.129 , pp. 9594-9595
    • Li, W.1    Blankman, J.L.2    Cravatt, B.F.3
  • 22
    • 84934935753 scopus 로고    scopus 로고
    • Enzymatic protein depalmitoylation by acyl protein thioesterases
    • Lin DTS, Conibear E. 2015. Enzymatic protein depalmitoylation by acyl protein thioesterases. Biochemical Society Transactions 43:193–198. doi: 10.1042/BST20140235.
    • (2015) Biochemical Society Transactions , vol.43 , pp. 193-198
    • Lin, D.1    Conibear, E.2
  • 23
    • 80054054097 scopus 로고    scopus 로고
    • The metabolic serine hydrolases and their functions in mammalian physiology and disease
    • Long JZ, Cravatt BF. 2011. The metabolic serine hydrolases and their functions in mammalian physiology and disease. Chemical Reviews 111:6022–6063. doi: 10.1021/cr200075y.
    • (2011) Chemical Reviews , vol.111 , pp. 6022-6063
    • Long, J.Z.1    Cravatt, B.F.2
  • 25
    • 59349119386 scopus 로고    scopus 로고
    • Large-scale profiling of protein palmitoylation in mammalian cells
    • Martin BR, Cravatt BF. 2009. Large-scale profiling of protein palmitoylation in mammalian cells. Nature Methods 6:135–138. doi: 10.1038/nmeth.1293.
    • (2009) Nature Methods , vol.6 , pp. 135-138
    • Martin, B.R.1    Cravatt, B.F.2
  • 27
    • 84859910414 scopus 로고    scopus 로고
    • A novel and conserved protein AHO-3 is required for thermotactic plasticity associated with feeding states in caenorhabditis elegans
    • Nishio N, Mohri-Shiomi A, Nishida Y, Hiramatsu N, Kodama-Namba E, Kimura KD, Kuhara A, Mori I. 2012. A novel and conserved protein AHO-3 is required for thermotactic plasticity associated with feeding states in caenorhabditis elegans. Genes to Cells 17:365–386. doi: 10.1111/j.1365-2443.2012.01594.x.
    • (2012) Genes to Cells , vol.17 , pp. 365-386
    • Nishio, N.1    Mohri-Shiomi, A.2    Nishida, Y.3    Hiramatsu, N.4    Kodama-Namba, E.5    Kimura, K.D.6    Kuhara, A.7    Mori, I.8
  • 28
    • 4644305386 scopus 로고    scopus 로고
    • Determination of protein-bound palmitate turnover rates using a three-compartment model that formally incorporates [3 H]Palmitate recycling †
    • Qanbar R, Bouvier M. 2004. Determination of protein-bound palmitate turnover rates using a three-compartment model that formally incorporates [3 H]Palmitate recycling † . Biochemistry 43:12275–12288. doi: 10.1021/bi049176u.
    • (2004) Biochemistry , vol.43 , pp. 12275-12288
    • Qanbar, R.1    Bouvier, M.2
  • 31
    • 78650718836 scopus 로고    scopus 로고
    • The intracellular dynamic of protein palmitoylation
    • Salaun C, Greaves J, Chamberlain LH. 2010. The intracellular dynamic of protein palmitoylation. The Journal of Cell Biology 191:1229–1238. doi: 10.1083/jcb.201008160.
    • (2010) The Journal of Cell Biology , vol.191 , pp. 1229-1238
    • Salaun, C.1    Greaves, J.2    Chamberlain, L.H.3
  • 33
    • 84907989908 scopus 로고    scopus 로고
    • Regional diversity and developmental dynamics of the AMPA-receptor proteome in the mammalian brain
    • Schwenk J, Baehrens D, Haupt A, Bildl W, Boudkkazi S, Roeper J, Fakler B, Schulte U. 2014. Regional diversity and developmental dynamics of the AMPA-receptor proteome in the mammalian brain. Neuron 84:41–54. doi: 10.1016/j.neuron.2014.08.044.
    • (2014) Neuron , vol.84 , pp. 41-54
    • Schwenk, J.1    Baehrens, D.2    Haupt, A.3    Bildl, W.4    Boudkkazi, S.5    Roeper, J.6    Fakler, B.7    Schulte, U.8
  • 35
    • 77951216021 scopus 로고    scopus 로고
    • Activity-based proteomics of enzyme superfamilies: Serine hydrolases as a case study
    • Simon GM, Cravatt BF. 2010. Activity-based proteomics of enzyme superfamilies: Serine hydrolases as a case study. Journal of Biological Chemistry 285:11051–11055. doi: 10.1074/jbc.R109.097600.
    • (2010) Journal of Biological Chemistry , vol.285 , pp. 11051-11055
    • Simon, G.M.1    Cravatt, B.F.2
  • 37
    • 84860374340 scopus 로고    scopus 로고
    • Distinct acyl protein transferases and thioesterases control surface expression of calcium-activated potassium channels
    • Tian L, McClafferty H, Knaus H-G, Ruth P, Shipston MJ. 2012. Distinct acyl protein transferases and thioesterases control surface expression of calcium-activated potassium channels. Journal of Biological Chemistry 287:14718–14725. doi: 10.1074/jbc.M111.335547.
    • (2012) Journal of Biological Chemistry , vol.287 , pp. 14718-14725
    • Tian, L.1    McClafferty, H.2    Knaus, H.-G.3    Ruth, P.4    Shipston, M.J.5
  • 38
    • 78649789580 scopus 로고    scopus 로고
    • Acyl-protein thioesterase 2 catalizes the deacylation of peripheral membrane-associated GAP-43
    • Tomatis VM, Trenchi A, Gomez GA, Daniotti JL, Uversky VN. 2010. Acyl-protein thioesterase 2 catalizes the deacylation of peripheral membrane-associated GAP-43. PLoS ONE 5:e15045. doi: 10.1371/journal.pone.0015045.
    • (2010) Plos ONE , vol.5
    • Tomatis, V.M.1    Trenchi, A.2    Gomez, G.A.3    Daniotti, J.L.4    Uversky, V.N.5
  • 39
    • 84891880503 scopus 로고    scopus 로고
    • The autodepalmitoylating activity of APT maintains the spatial organization of palmitoylated membrane proteins
    • Vartak N, Papke B, Grecco HE, Rossmannek L, Waldmann H, Hedberg C, Bastiaens PIH. 2014. The autodepalmitoylating activity of APT maintains the spatial organization of palmitoylated membrane proteins. Biophysical Journal 106:93–105. doi: 10.1016/j.bpj.2013.11.024.
    • (2014) Biophysical Journal , vol.106 , pp. 93-105
    • Vartak, N.1    Papke, B.2    Grecco, H.E.3    Rossmannek, L.4    Waldmann, H.5    Hedberg, C.6    Bastiaens, P.7
  • 40
    • 0024315871 scopus 로고
    • Fatty acid synthase, a proficient multifunctional enzyme
    • Wakil SJ. 1989. Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry 28:4523–4530. doi: 10.1021/bi00437a001.
    • (1989) Biochemistry , vol.28 , pp. 4523-4530
    • Wakil, S.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.