메뉴 건너뛰기




Volumn 17, Issue 1, 2016, Pages

Impact of imputation methods on the amount of genetic variation captured by a single-nucleotide polymorphism panel in soybeans

Author keywords

Association studies; Empirical Bayes; Genomic selection; Heritability

Indexed keywords

BIT ERROR RATE; DECISION TREES; FORECASTING; GENES; HIDDEN MARKOV MODELS; INFORMATION USE; MARKOV PROCESSES; NEAREST NEIGHBOR SEARCH; NUCLEOTIDES; SEED; TRELLIS CODES;

EID: 84956833334     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-016-0899-7     Document Type: Article
Times cited : (23)

References (66)
  • 1
    • 84891583325 scopus 로고    scopus 로고
    • John Wiley & Sons. The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK.
    • Acquaah G. Principles of plant genetics and breeding. 2009. John Wiley & Sons. The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK.
    • (2009) Principles of plant genetics and breeding.
    • Acquaah, G.1
  • 2
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Learn. 2001;45(1):5-32.
    • (2001) Mach Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 3
    • 77950332127 scopus 로고    scopus 로고
    • High-resolution detection of identity by descent in unrelated individuals
    • Browning SR, Browning BL. High-resolution detection of identity by descent in unrelated individuals. Am J Hum Genet. 2010;86(4):526-39.
    • (2010) Am J Hum Genet , vol.86 , Issue.4 , pp. 526-539
    • Browning, S.R.1    Browning, B.L.2
  • 4
    • 35348817330 scopus 로고    scopus 로고
    • Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering
    • Browning SR, Browning BL. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet. 2007;81(5):1084-97.
    • (2007) Am J Hum Genet , vol.81 , Issue.5 , pp. 1084-1097
    • Browning, S.R.1    Browning, B.L.2
  • 5
    • 84904253069 scopus 로고    scopus 로고
    • Impact of Genotype Imputation on the Performance of GBLUP and Bayesian Methods for Genomic Prediction
    • Chen L, Li C, Sargolzaei M, Schenkel F. Impact of Genotype Imputation on the Performance of GBLUP and Bayesian Methods for Genomic Prediction. PLoS One. 2014;9(7):e101544.
    • (2014) PLoS One , vol.9 , Issue.7
    • Chen, L.1    Li, C.2    Sargolzaei, M.3    Schenkel, F.4
  • 6
    • 79959332314 scopus 로고    scopus 로고
    • Effect of imputing markers from a low-density chip on the reliability of genomic breeding values in Holstein populations
    • Dassonneville R, Brøndum RF, Druet T, Fritz S, Guillaume F, Guldbrandtsen B, et al. Effect of imputing markers from a low-density chip on the reliability of genomic breeding values in Holstein populations. J Dairy Sci. 2011;94(7):3679-86.
    • (2011) J Dairy Sci , vol.94 , Issue.7 , pp. 3679-3686
    • Dassonneville, R.1    Brøndum, R.F.2    Druet, T.3    Fritz, S.4    Guillaume, F.5    Guldbrandtsen, B.6
  • 7
    • 84876390765 scopus 로고    scopus 로고
    • Whole-genome regression and prediction methods applied to plant and animal breeding.
    • de los Campos G, Hickey JM, Pong-Wong R, Daetwyler HD, Calus MP. Whole-genome regression and prediction methods applied to plant and animal breeding. Genetics. 2013;193(2):327-45.
    • (2013) Genetics. , vol.193 , Issue.2 , pp. 327-345
    • de los Campos, G.1    Hickey, J.M.2    Pong-Wong, R.3    Daetwyler, H.D.4    Calus, M.P.5
  • 8
    • 84878455126 scopus 로고    scopus 로고
    • Use of partial least squares regression to impute SNP genotypes in Italian Cattle breeds
    • Dimauro C, Cellesi M, Gaspa G, Ajmone-Marsan P, Steri R, Marras G, et al. Use of partial least squares regression to impute SNP genotypes in Italian Cattle breeds. Gen Sel Evol. 2013;45(1):1-8.
    • (2013) Gen Sel Evol , vol.45 , Issue.1 , pp. 1-8
    • Dimauro, C.1    Cellesi, M.2    Gaspa, G.3    Ajmone-Marsan, P.4    Steri, R.5    Marras, G.6
  • 9
    • 77950613737 scopus 로고    scopus 로고
    • A hidden Markov model combining linkage and linkage disequilibrium information for haplotype reconstruction and quantitative trait locus fine mapping
    • Druet T, Georges M. A hidden Markov model combining linkage and linkage disequilibrium information for haplotype reconstruction and quantitative trait locus fine mapping. Genetics. 2010;184(3):789-98.
    • (2010) Genetics , vol.184 , Issue.3 , pp. 789-798
    • Druet, T.1    Georges, M.2
  • 10
  • 11
    • 84924943366 scopus 로고    scopus 로고
    • Quality Control of Genotypes Using Heritability Estimates of Gene Content at the Marker
    • Forneris NS, Legarra A, Vitezica ZG, Tsuruta S, Aguilar I, Misztal I, et al. Quality Control of Genotypes Using Heritability Estimates of Gene Content at the Marker. Genetics. 2015;199(3):675-81.
    • (2015) Genetics , vol.199 , Issue.3 , pp. 675-681
    • Forneris, N.S.1    Legarra, A.2    Vitezica, Z.G.3    Tsuruta, S.4    Aguilar, I.5    Misztal, I.6
  • 12
    • 77955140508 scopus 로고    scopus 로고
    • The impact of Levene's test of equality of variances on statistical theory and practice
    • Gastwirth JL, Gel YR, Miao W. The impact of Levene's test of equality of variances on statistical theory and practice. Stat Sci. 2009;24(3):343-60.
    • (2009) Stat Sci , vol.24 , Issue.3 , pp. 343-360
    • Gastwirth, J.L.1    Gel, Y.R.2    Miao, W.3
  • 13
    • 33947400230 scopus 로고    scopus 로고
    • A simple method to approximate gene content in large pedigree populations: application to the myostatin gene in dual-purpose Belgian Blue cattle
    • Gengler N, Mayeres P, Szydlowski M. A simple method to approximate gene content in large pedigree populations: application to the myostatin gene in dual-purpose Belgian Blue cattle. Animal. 2007;1(1):21-8.
    • (2007) Animal , vol.1 , Issue.1 , pp. 21-28
    • Gengler, N.1    Mayeres, P.2    Szydlowski, M.3
  • 14
    • 84879743015 scopus 로고    scopus 로고
    • Priors in whole-genome regression: the Bayesian alphabet returns
    • Gianola D. Priors in whole-genome regression: the Bayesian alphabet returns. Genetics. 2013;194(3):573-96.
    • (2013) Genetics , vol.194 , Issue.3 , pp. 573-596
    • Gianola, D.1
  • 16
    • 64349091037 scopus 로고    scopus 로고
    • SNP imputation in association studies
    • Halperin E, Stephan DA. SNP imputation in association studies. Nat Biotechnol. 2009;27(4):349-51.
    • (2009) Nat Biotechnol , vol.27 , Issue.4 , pp. 349-351
    • Halperin, E.1    Stephan, D.A.2
  • 17
    • 84925217749 scopus 로고    scopus 로고
    • Prospects and limits of marker imputation in quantitative genetic studies in European elite wheat (Triticum aestivum L.)
    • He S, Zhao Y, Mette MF, Bothe R, Ebmeyer E, Sharbel TF, et al. Prospects and limits of marker imputation in quantitative genetic studies in European elite wheat (Triticum aestivum L.). BMC Genomics. 2015;16(1):168.
    • (2015) BMC Genomics. , vol.16 , Issue.1 , pp. 168
    • He, S.1    Zhao, Y.2    Mette, M.F.3    Bothe, R.4    Ebmeyer, E.5    Sharbel, T.F.6
  • 18
  • 19
    • 0040845224 scopus 로고
    • Estimation of variances and covariances under multiple trait models
    • Henderson CR. Estimation of variances and covariances under multiple trait models. J Dairy Sci. 1984;67(7):1581-9.
    • (1984) J Dairy Sci , vol.67 , Issue.7 , pp. 1581-1589
    • Henderson, C.R.1
  • 20
    • 84902603065 scopus 로고    scopus 로고
    • Parametric and nonparametric statistical methods for genomic selection of traits with additive and epistatic genetic architectures.
    • Howard R, Carriquiry AL, Beavis WD. Parametric and nonparametric statistical methods for genomic selection of traits with additive and epistatic genetic architectures. G3. 2014;4(6):1027-46.
    • (2014) G3. , vol.4 , Issue.6 , pp. 1027-1046
    • Howard, R.1    Carriquiry, A.L.2    Beavis, W.D.3
  • 21
    • 67651222400 scopus 로고    scopus 로고
    • A flexible and accurate genotype imputation method for the next generation of genome-wide association studies
    • Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009;5(6):e1000529.
    • (2009) PLoS Genet , vol.5 , Issue.6
    • Howie, B.N.1    Donnelly, P.2    Marchini, J.3
  • 22
    • 84907414054 scopus 로고    scopus 로고
    • Genotyping by sequencing for genomic prediction in a soybean breeding population
    • Jarquín D, Kocak K, Posadas L, Hyma K, Jedlicka J, Graef G, et al. Genotyping by sequencing for genomic prediction in a soybean breeding population. BMC Genomics. 2014;15(1):740.
    • (2014) BMC Genomics , vol.15 , Issue.1 , pp. 740
    • Jarquín, D.1    Kocak, K.2    Posadas, L.3    Hyma, K.4    Jedlicka, J.5    Graef, G.6
  • 23
    • 57049117902 scopus 로고    scopus 로고
    • Association mapping and significance estimation via the coalescent
    • Kimmel G, Karp RM, Jordan MI, Halperin E. Association mapping and significance estimation via the coalescent. Am J Hum Genet. 2008;83(6):675-83.
    • (2008) Am J Hum Genet , vol.83 , Issue.6 , pp. 675-683
    • Kimmel, G.1    Karp, R.M.2    Jordan, M.I.3    Halperin, E.4
  • 24
    • 38949168198 scopus 로고    scopus 로고
    • Technical note: computing strategies in genome-wide selection
    • Legarra A, Misztal I. Technical note: computing strategies in genome-wide selection. J Dairy Sci. 2008;91(1):360-6.
    • (2008) J Dairy Sci , vol.91 , Issue.1 , pp. 360-366
    • Legarra, A.1    Misztal, I.2
  • 26
    • 78649508578 scopus 로고    scopus 로고
    • MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes
    • Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol. 2010;34(8):816-34.
    • (2010) Genet Epidemiol , vol.34 , Issue.8 , pp. 816-834
    • Li, Y.1    Willer, C.J.2    Ding, J.3    Scheet, P.4    Abecasis, G.R.5
  • 27
    • 84883222798 scopus 로고    scopus 로고
    • Resource allocation for maximizing prediction accuracy and genetic gain of genomic selection in plant breeding: a simulation experiment
    • Lorenz AJ. Resource allocation for maximizing prediction accuracy and genetic gain of genomic selection in plant breeding: a simulation experiment. G3. 2013;3(3):481-91.
    • (2013) G3 , vol.3 , Issue.3 , pp. 481-491
    • Lorenz, A.J.1
  • 28
    • 0003873122 scopus 로고    scopus 로고
    • Genetics and analysis of quantitative traits.
    • Sunderland, MA.
    • Lynch M, Walsh B. Genetics and analysis of quantitative traits. Sinauer Associates, Inc. Sunderland, MA. 1998.
    • (1998) Sinauer Associates, Inc.
    • Lynch, M.1    Walsh, B.2
  • 29
    • 84879306295 scopus 로고    scopus 로고
    • Comparison of different methods for imputing genome-wide marker genotypes in Swedish and Finnish Red Cattle
    • Ma P, Brøndum RF, Zhang Q, Lund MS, Su G. Comparison of different methods for imputing genome-wide marker genotypes in Swedish and Finnish Red Cattle. J Dairy Sci. 2013;96(7):4666-77.
    • (2013) J Dairy Sci , vol.96 , Issue.7 , pp. 4666-4677
    • Ma, P.1    Brøndum, R.F.2    Zhang, Q.3    Lund, M.S.4    Su, G.5
  • 30
    • 77953808087 scopus 로고    scopus 로고
    • Genotype imputation for genome-wide association studies
    • Marchini J, Howie B. Genotype imputation for genome-wide association studies. Nat Rev Genet. 2010;11(7):499-511.
    • (2010) Nat Rev Genet , vol.11 , Issue.7 , pp. 499-511
    • Marchini, J.1    Howie, B.2
  • 31
    • 0035045051 scopus 로고    scopus 로고
    • Prediction of total genetic value using genome-wide dense marker maps
    • Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001;157(4):1819-29.
    • (2001) Genetics , vol.157 , Issue.4 , pp. 1819-1829
    • Meuwissen, T.H.E.1    Hayes, B.J.2    Goddard, M.E.3
  • 34
    • 84949115828 scopus 로고    scopus 로고
    • Kernel-based whole-genome prediction of complex traits: a review
    • Morota G, Gianola D. Kernel-based whole-genome prediction of complex traits: a review. Front Genet. 2014;5(1):363.
    • (2014) Front Genet , vol.5 , Issue.1 , pp. 363
    • Morota, G.1    Gianola, D.2
  • 35
    • 84897987101 scopus 로고    scopus 로고
    • Kernel-based variance component estimation and whole-genome prediction of pre-corrected phenotypes and progeny tests for dairy cow health traits
    • Morota G, Boddhireddy P, Vukasinovic N, Gianola D, DeNise S. Kernel-based variance component estimation and whole-genome prediction of pre-corrected phenotypes and progeny tests for dairy cow health traits. Front Genet. 2014;5(1):56.
    • (2014) Front Genet , vol.5 , Issue.1 , pp. 56
    • Morota, G.1    Boddhireddy, P.2    Vukasinovic, N.3    Gianola, D.4    DeNise, S.5
  • 36
    • 71549165598 scopus 로고    scopus 로고
    • Bi-cross-validation of the SVD and the nonnegative matrix factorization
    • Owen AB, Perry PO. Bi-cross-validation of the SVD and the nonnegative matrix factorization. Ann Appl Stat. 2009;3(2):564-94.
    • (2009) Ann Appl Stat , vol.3 , Issue.2 , pp. 564-594
    • Owen, A.B.1    Perry, P.O.2
  • 37
    • 84861598099 scopus 로고    scopus 로고
    • Extremely low-coverage sequencing and imputation increases power for genome-wide association studies
    • Pasaniuc B, Rohland N, McLaren PJ, Garimella K, Zaitlen N, Li H, et al. Extremely low-coverage sequencing and imputation increases power for genome-wide association studies. Nat Genet. 2012;44(6):631-5.
    • (2012) Nat Genet , vol.44 , Issue.6 , pp. 631-635
    • Pasaniuc, B.1    Rohland, N.2    McLaren, P.J.3    Garimella, K.4    Zaitlen, N.5    Li, H.6
  • 38
  • 39
    • 84907997062 scopus 로고    scopus 로고
    • Genome-wide regression & prediction with the BGLR statistical package
    • Pérez P, de los Campos G. Genome-wide regression & prediction with the BGLR statistical package. Genetics. 2014;198(2):483-95.
    • (2014) Genetics , vol.198 , Issue.2 , pp. 483-495
    • Pérez, P.1    de los Campos, G.2
  • 41
    • 84876689232 scopus 로고    scopus 로고
    • Enlarging a training set for genomic selection by imputation of un-genotyped animals in populations of varying genetic architecture.
    • Pimentel EC, Wensch-Dorendorf M, König S, Swalve HH. Enlarging a training set for genomic selection by imputation of un-genotyped animals in populations of varying genetic architecture. Genet Sel Evol. 2013;45(12).
    • (2013) Genet Sel Evol. , vol.45 , Issue.12
    • Pimentel, E.C.1    Wensch-Dorendorf, M.2    König, S.3    Swalve, H.H.4
  • 42
    • 84875444971 scopus 로고    scopus 로고
    • Genotyping-by-sequencing for plant breeding and genetics
    • Poland JA, Rife TW. Genotyping-by-sequencing for plant breeding and genetics. Plant Genome. 2012;5(3):92-102.
    • (2012) Plant Genome , vol.5 , Issue.3 , pp. 92-102
    • Poland, J.A.1    Rife, T.W.2
  • 43
    • 84878537188 scopus 로고    scopus 로고
    • Genomic selection in wheat breeding using genotyping-by-sequencing
    • Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, et al. Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome. 2012;5(3):103-13.
    • (2012) Plant Genome , vol.5 , Issue.3 , pp. 103-113
    • Poland, J.1    Endelman, J.2    Dawson, J.3    Rutkoski, J.4    Wu, S.5    Manes, Y.6
  • 44
    • 84883302611 scopus 로고    scopus 로고
    • Imputation of unordered markers and the impact on genomic selection accuracy.
    • Rutkoski JE, Poland J, Jannink JL, Sorrells ME. Imputation of unordered markers and the impact on genomic selection accuracy. G3. 2013;3(3):427-39.
    • (2013) G3. , vol.3 , Issue.3 , pp. 427-439
    • Rutkoski, J.E.1    Poland, J.2    Jannink, J.L.3    Sorrells, M.E.4
  • 45
    • 33745885274 scopus 로고    scopus 로고
    • Strategy for applying genome-wide selection in dairy cattle
    • Schaeffer LR. Strategy for applying genome-wide selection in dairy cattle. J Anim Breed Genet. 2006;123(4):218-23.
    • (2006) J Anim Breed Genet , vol.123 , Issue.4 , pp. 218-223
    • Schaeffer, L.R.1
  • 46
    • 33644974019 scopus 로고    scopus 로고
    • A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase
    • Scheet P, Stephens M. A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet. 2006;78(4):629-44.
    • (2006) Am J Hum Genet , vol.78 , Issue.4 , pp. 629-644
    • Scheet, P.1    Stephens, M.2
  • 47
    • 0035284320 scopus 로고    scopus 로고
    • Analysis of incomplete climate data: Estimation of mean values and covariance matrices and imputation of missing values
    • Schneider T. Analysis of incomplete climate data: Estimation of mean values and covariance matrices and imputation of missing values. J Climate. 2001;14(5):853-71.
    • (2001) J Climate , vol.14 , Issue.5 , pp. 853-871
    • Schneider, T.1
  • 48
    • 84872789979 scopus 로고    scopus 로고
    • An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping
    • Sonah H, Bastien M, Iquira E, Tardivel A, Légaré G, Boyle B, et al. An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS One. 2013;8(1):e54603.
    • (2013) PLoS One , vol.8 , Issue.1
    • Sonah, H.1    Bastien, M.2    Iquira, E.3    Tardivel, A.4    Légaré, G.5    Boyle, B.6
  • 49
    • 67149095078 scopus 로고    scopus 로고
    • Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip
    • Spencer CC, Su Z, Donnelly P, Marchini J. Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip. PLoS Genet. 2009;5(5):e1000477.
    • (2009) PLoS Genet , vol.5 , Issue.5
    • Spencer, C.C.1    Su, Z.2    Donnelly, P.3    Marchini, J.4
  • 50
    • 84855177476 scopus 로고    scopus 로고
    • MissForest - nonparametric missing value imputation for mixed-type data
    • Stekhoven DJ, Bühlmann P. MissForest - nonparametric missing value imputation for mixed-type data. Bioinformatics. 2012;28(1):112-8.
    • (2012) Bioinformatics , vol.28 , Issue.1 , pp. 112-118
    • Stekhoven, D.J.1    Bühlmann, P.2
  • 51
    • 80455127234 scopus 로고    scopus 로고
    • Allele coding in genomic evaluation
    • Strandén I, Christensen OF. Allele coding in genomic evaluation. Genet Sel Evol. 2011;43(1):25.
    • (2011) Genet Sel Evol , vol.43 , Issue.1 , pp. 25
    • Strandén, I.1    Christensen, O.F.2
  • 52
    • 78649282892 scopus 로고    scopus 로고
    • Founder population-specific HapMap panel increases power in GWA studies through improved imputation accuracy and CNV tagging
    • Surakka I, Kristiansson K, Anttila V, Inouye M, Barnes C, Moutsianas L, et al. Founder population-specific HapMap panel increases power in GWA studies through improved imputation accuracy and CNV tagging. Genome Res. 2010;20(10):1344-51.
    • (2010) Genome Res , vol.20 , Issue.10 , pp. 1344-1351
    • Surakka, I.1    Kristiansson, K.2    Anttila, V.3    Inouye, M.4    Barnes, C.5    Moutsianas, L.6
  • 53
    • 84908429193 scopus 로고    scopus 로고
    • Novel Methods to Optimize Genotypic Imputation for Low-Coverage, Next-Generation Sequence Data in Crop Plants.
    • Swarts K, Li H, Romero Navarro JA, An D, Romay MC, Hearne S, et al. Novel Methods to Optimize Genotypic Imputation for Low-Coverage, Next-Generation Sequence Data in Crop Plants. The Plant Genome. 2014;7(3):0.
    • (2014) The Plant Genome. , vol.7 , Issue.3
    • Swarts, K.1    Li, H.2    Romero Navarro, J.A.3    An, D.4    Romay, M.C.5    Hearne, S.6
  • 54
    • 71249120180 scopus 로고    scopus 로고
    • The effect of minor allele frequency on the likelihood of obtaining false positives.
    • Tabangin ME, Woo JG, Martin LJ. The effect of minor allele frequency on the likelihood of obtaining false positives. BMC Proc. 2009;3(7):S41. BioMed Central Ltd.
    • (2009) BMC Proc. , vol.3 , Issue.7 , pp. S41
    • Tabangin, M.E.1    Woo, J.G.2    Martin, L.J.3
  • 56
    • 84904077192 scopus 로고    scopus 로고
    • Accuracy of Imputation to Whole-Genome Sequence Data in Holstein Friesian Cattle.
    • van Binsbergen R. Accuracy of Imputation to Whole-Genome Sequence Data in Holstein Friesian Cattle. Genet Sel Evol. 2014;46(1):41-54.
    • (2014) Genet Sel Evol. , vol.46 , Issue.1 , pp. 41-54
    • van Binsbergen, R.1
  • 59
    • 55849133422 scopus 로고    scopus 로고
    • Efficient methods to compute genomic predictions
    • VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci. 2008;91(11):4414-23.
    • (2008) J Dairy Sci , vol.91 , Issue.11 , pp. 4414-4423
    • VanRaden, P.M.1
  • 61
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance-based learning algorithms
    • Wilson DR, Martinez TR. Reduction techniques for instance-based learning algorithms. Mach Learn. 2000;38(3):257-86.
    • (2000) Mach Learn , vol.38 , Issue.3 , pp. 257-286
    • Wilson, D.R.1    Martinez, T.R.2
  • 62
    • 0001507896 scopus 로고
    • Coefficients of inbreeding and relationship
    • Wright S. Coefficients of inbreeding and relationship. Am Nat. 1922;56:330-8.
    • (1922) Am Nat , vol.56 , pp. 330-338
    • Wright, S.1
  • 64
    • 0037297614 scopus 로고    scopus 로고
    • Estimating polygenic effects using markers of the entire genome
    • Xu S. Estimating polygenic effects using markers of the entire genome. Genetics. 2003;163(2):789-801.
    • (2003) Genetics , vol.163 , Issue.2 , pp. 789-801
    • Xu, S.1
  • 65
    • 84903384816 scopus 로고    scopus 로고
    • A new genotype imputation method with tolerance to high missing rate and rare variants.
    • Yang Y, Wang Q, Chen Q, Liao R, Zhang X, Yang H, et al. A new genotype imputation method with tolerance to high missing rate and rare variants. PLoS One. 2014;9(6):e101025.
    • (2014) PLoS One. , vol.9 , Issue.6 , pp. e101025
    • Yang, Y.1    Wang, Q.2    Chen, Q.3    Liao, R.4    Zhang, X.5    Yang, H.6
  • 66
    • 84897954264 scopus 로고    scopus 로고
    • Efficient multivariate linear mixed model algorithms for genome-wide association studies
    • Zhou X, Stephens M. Efficient multivariate linear mixed model algorithms for genome-wide association studies. Nat Methods. 2014;11(4):407-9.
    • (2014) Nat Methods , vol.11 , Issue.4 , pp. 407-409
    • Zhou, X.1    Stephens, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.