-
1
-
-
0033309515
-
Neural networks in materials science
-
Bhadeshia, H. K. D. H. Neural Networks in Materials Science. ISIJ International 39, 966-979 (1999).
-
(1999)
ISIJ International
, vol.39
, pp. 966-979
-
-
Bhadeshia, H.K.D.H.1
-
2
-
-
80051765814
-
Identifying the inorganic gene for high-temperature piezoelectric perovskites through statistical learning
-
Balachandran, P. V., Broderick, S. R. & Rajan, K. Identifying the inorganic gene for high-temperature piezoelectric perovskites through statistical learning. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 467, 2271-2290 (2011).
-
(2011)
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science
, vol.467
, pp. 2271-2290
-
-
Balachandran, P.V.1
Broderick, S.R.2
Rajan, K.3
-
3
-
-
84858057930
-
Data mining for materials: Computational experiments with AB compounds
-
Saad, Y. Et al. Data mining for materials: Computational experiments with AB compounds. Phys. Rev. B 85, 104104 (2012).
-
(2012)
Phys. Rev. B
, vol.85
, pp. 104104
-
-
Saad, Y.1
-
4
-
-
84885144755
-
Accelerating materials property predictions using machine learning
-
Pilania, G., Wang, C., Jiang, X., Rajasekaran, S. & Ramprasad, R. Accelerating materials property predictions using machine learning. Scientific Reports 3, 2810 (2013).
-
(2013)
Scientific Reports
, vol.3
, pp. 2810
-
-
Pilania, G.1
Wang, C.2
Jiang, X.3
Rajasekaran, S.4
Ramprasad, R.5
-
5
-
-
84897608202
-
Machine learning with systematic density-functional theory calculations: Application to melting temperatures of single-and binary-component solids
-
Seko, A., Maekawa, T., Tsuda, K. & Tanaka, I. Machine learning with systematic density-functional theory calculations: Application to melting temperatures of single-and binary-component solids. Phys. Rev. B 89, 054303 (2014).
-
(2014)
Phys. Rev. B
, vol.89
, pp. 054303
-
-
Seko, A.1
Maekawa, T.2
Tsuda, K.3
Tanaka, I.4
-
6
-
-
84889259535
-
Informatics-aided bandgap engineering for solar materials
-
Dey, P. Et al. Informatics-aided bandgap engineering for solar materials. Computational Materials Science 83, 185-195 (2014).
-
(2014)
Computational Materials Science
, vol.83
, pp. 185-195
-
-
Dey, P.1
-
7
-
-
84875458397
-
The high-throughput highway to computational materials design
-
Curtarolo, S. Et al. The high-throughput highway to computational materials design. Nat Mater. 12, 191-201 (2013).
-
(2013)
Nat Mater.
, vol.12
, pp. 191-201
-
-
Curtarolo, S.1
-
8
-
-
84886996545
-
Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
-
Jain, A. Et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials 1 (2013).
-
(2013)
APL Materials
, vol.1
-
-
Jain, A.1
-
9
-
-
84887236786
-
Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD)
-
Saal, J., Kirklin, S., Aykol, M., Meredig, B. & Wolverton, C. Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD). JOM 65, 1501-1509 (2013).
-
(2013)
JOM
, vol.65
, pp. 1501-1509
-
-
Saal, J.1
Kirklin, S.2
Aykol, M.3
Meredig, B.4
Wolverton, C.5
-
10
-
-
84925727695
-
Prediction and accelerated laboratory discovery of previously unknown 18-electron ABX compounds
-
Gautier, R. Et al. Prediction and accelerated laboratory discovery of previously unknown 18-electron ABX compounds. Nat Chem 7, 308-316 (2015).
-
(2015)
Nat Chem
, vol.7
, pp. 308-316
-
-
Gautier, R.1
-
11
-
-
0000561424
-
Efficient global optimization of expensive black-box functions
-
Jones, D. R., Schonlau, M. & Welch, W. J. Efficient global optimization of expensive black-box functions. J. of Global Optimization 13, 455-492 (1998).
-
(1998)
J. of Global Optimization
, vol.13
, pp. 455-492
-
-
Jones, D.R.1
Schonlau, M.2
Welch, W.J.3
-
12
-
-
79961007365
-
The illusion of distribution-free small-sample classification in genomics
-
Dougherty, E. R., Zollanvari, A. & Braga-Neto, U. M. The Illusion of Distribution-Free Small-Sample Classification in Genomics. Curr Genomics 12, 333-341 (2011).
-
(2011)
Curr Genomics
, vol.12
, pp. 333-341
-
-
Dougherty, E.R.1
Zollanvari, A.2
Braga-Neto, U.M.3
-
13
-
-
84930631638
-
Probabilistic machine learning and artificial intelligence
-
Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature 521, 452-459 (2015).
-
(2015)
Nature
, vol.521
, pp. 452-459
-
-
Ghahramani, Z.1
-
14
-
-
70449498873
-
The knowledge-gradient policy for correlated normal beliefs
-
Frazier, P., Powell, W. & Dayanik, S. The knowledge-gradient policy for correlated normal beliefs. INFORMS Journal on Computing 21, 599-613 (2009).
-
(2009)
INFORMS Journal on Computing
, vol.21
, pp. 599-613
-
-
Frazier, P.1
Powell, W.2
Dayanik, S.3
-
17
-
-
80555140075
-
Scikit-learn: Machine learning in python
-
Pedregosa, F. Et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12, 2825-2830 (2011).
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
-
19
-
-
84905578000
-
A genomic approach to the stability, elastic, and electronic properties of the MAX phases
-
Aryal, S., Sakidja, R., Barsoum, M. W. & Ching, W.-Y. A genomic approach to the stability, elastic, and electronic properties of the MAX phases. physica status solidi (b) 251, 1480-1497 (2014).
-
(2014)
Physica Status Solidi (B)
, vol.251
, pp. 1480-1497
-
-
Aryal, S.1
Sakidja, R.2
Barsoum, M.W.3
Ching, W.-Y.4
-
20
-
-
67651149834
-
A comprehensive survey of M2AX phase elastic properties
-
Cover, M. F., Warschkow, O., Bilek, M. M. M. & McKenzie, D. R. A comprehensive survey of M2AX phase elastic properties. Journal of Physics: Condensed Matter 21, 305403 (2009).
-
(2009)
Journal of Physics: Condensed Matter
, vol.21
, pp. 305403
-
-
Cover, M.F.1
Warschkow, O.2
Bilek, M.M.M.3
McKenzie, D.R.4
-
22
-
-
39249085484
-
Charge-density-shear-moduli relationships in aluminum-lithium alloys
-
Eberhart, M. Charge-Density-Shear-Moduli Relationships in Aluminum-Lithium Alloys. Phys. Rev. Lett. 87, 205503 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 205503
-
-
Eberhart, M.1
-
23
-
-
84860146524
-
Extreme Poisson's ratios and their electronic origin in B2 CsCl-type AB intermetallic compounds
-
Wang, X. F., Jones, T. E., Li, W. & Zhou, Y. C. Extreme Poisson's ratios and their electronic origin in B2 CsCl-type AB intermetallic compounds. Phys. Rev. B 85, 134108 (2012).
-
(2012)
Phys. Rev. B
, vol.85
, pp. 134108
-
-
Wang, X.F.1
Jones, T.E.2
Li, W.3
Zhou, Y.C.4
-
24
-
-
70349764458
-
Influence of the electronic structure on the ductile behavior of B2 CsCl-type AB intermetallics
-
Gschneidner, K. Et al. Influence of the electronic structure on the ductile behavior of B2 CsCl-type AB intermetallics. Acta Materialia 57, 5876-5881 (2009).
-
(2009)
Acta Materialia
, vol.57
, pp. 5876-5881
-
-
Gschneidner, K.1
-
25
-
-
84940037979
-
Materials Prediction via Classification Learning
-
Balachandran, P. V., Theiler, J., Rondinelli, J. M. & Lookman, T. Materials Prediction via Classification Learning. Scientific Reports 5, 13285 (2015).
-
(2015)
Scientific Reports
, vol.5
, pp. 13285
-
-
Balachandran, P.V.1
Theiler, J.2
Rondinelli, J.M.3
Lookman, T.4
-
26
-
-
84871543700
-
-
Powell, W. B. & Ryzhov, I. O. Optimal Learning (John Wiley & Sons, Inc., Hoboken, New Jersey, 2012).
-
Optimal Learning (John Wiley & Sons, Inc., Hoboken, New Jersey, 2012
-
-
Powell, W.B.1
Ryzhov, I.O.2
-
27
-
-
84897840142
-
Combinatorial screening for new materials in unconstrained composition space with machine learning
-
Meredig, B. Et al. Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys. Rev. B 89, 094104 (2014).
-
(2014)
Phys. Rev. B
, vol.89
, pp. 094104
-
-
Meredig, B.1
-
28
-
-
84936846648
-
Crystal structure representations for machine learning models of formation energies
-
Faber, F., Lindmaa, A., von Lilienfeld, O. A. & Armiento, R. Crystal structure representations for machine learning models of formation energies. International Journal of Quantum Chemistry 115, 1094-1101 (2015).
-
(2015)
International Journal of Quantum Chemistry
, vol.115
, pp. 1094-1101
-
-
Faber, F.1
Lindmaa, A.2
Von Lilienfeld, O.A.3
Armiento, R.4
-
29
-
-
85016437770
-
Machine learning in materials science: Recent progress and emerging applications
-
Parrill, A. L. & Lipkowitz, K. B. (eds) Wiley
-
Mueller, T., Kusne, A. G. & Ramprasad, R. Machine learning in materials science: Recent progress and emerging applications. In Parrill, A. L. & Lipkowitz, K. B. (eds) Reviews in Computational Chemistry vol. 29 (Wiley, 2016).
-
(2016)
Reviews in Computational Chemistry
, vol.29
-
-
Mueller, T.1
Kusne, A.G.2
Ramprasad, R.3
-
30
-
-
84947783068
-
Materials Informatics: The Materials "Gene" and Big Data
-
Rajan, K. Materials Informatics: The Materials "Gene" and Big Data. Annual Review of Materials Research 45, 153-169 (2015).
-
(2015)
Annual Review of Materials Research
, vol.45
, pp. 153-169
-
-
Rajan, K.1
-
32
-
-
84932619170
-
A predictive machine learning approach for microstructure optimization and materials design
-
Liu, R. Et al. A predictive machine learning approach for microstructure optimization and materials design. Scientific Reports 5, 11551 (2015).
-
(2015)
Scientific Reports
, vol.5
, pp. 11551
-
-
Liu, R.1
-
33
-
-
84942306511
-
Big-deep-smart data in imaging for guiding materials design
-
Kalinin, S. V., Sumpter, B. G. & Archibald, R. K. Big-deep-smart data in imaging for guiding materials design. Nat Mater 14, 973-980 (2015).
-
(2015)
Nat Mater
, vol.14
, pp. 973-980
-
-
Kalinin, S.V.1
Sumpter, B.G.2
Archibald, R.K.3
-
34
-
-
33746931581
-
On outliers and activity cliffs: Why QSAR often disappoints
-
Maggiora, G. M. On Outliers and Activity Cliffs: Why QSAR Often Disappoints. Journal of Chemical Information and Modeling 46, 1535-1535 (2006).
-
(2006)
Journal of Chemical Information and Modeling
, vol.46
, pp. 1535
-
-
Maggiora, G.M.1
-
35
-
-
57849156863
-
Voyages to the (un)known: Adaptive design of bioactive compounds
-
Schneider, G. Et al. Voyages to the (un)known: Adaptive design of bioactive compounds. Trends in Biotechnology 27, 18-26 (2009).
-
(2009)
Trends in Biotechnology
, vol.27
, pp. 18-26
-
-
Schneider, G.1
|