메뉴 건너뛰기




Volumn 45, Issue , 2015, Pages 153-169

Materials Informatics: The Materials "gene" and Big Data

Author keywords

Fuzzy logic; Information theory; Rough sets; Statistical inference; Uncertainty

Indexed keywords

FUZZY LOGIC; GENES; INFORMATION SCIENCE; INFORMATION THEORY; ROUGH SET THEORY;

EID: 84947783068     PISSN: 15317331     EISSN: None     Source Type: Book Series    
DOI: 10.1146/annurev-matsci-070214-021132     Document Type: Article
Times cited : (252)

References (58)
  • 1
    • 84861946730 scopus 로고    scopus 로고
    • Beyond crystals: The dialectic of materials and information
    • Cartwright JHE, Mackay AL. 2012. Beyond crystals: The dialectic of materials and information. Philos. Trans. R. Soc. A 370:2807-22
    • (2012) Philos. Trans. R. Soc. A , vol.370 , pp. 2807-2822
    • Cartwright, J.H.E.1    Mackay, A.L.2
  • 2
    • 0007470245 scopus 로고
    • Generalized crystallography
    • Mackay AL. 1995. Generalized crystallography. J. Mol. Crystallogr. 336:293-303
    • (1995) J. Mol. Crystallogr. , vol.336 , pp. 293-303
    • Mackay, A.L.1
  • 3
    • 80051765814 scopus 로고    scopus 로고
    • Identifying the "inorganic gene" for high temperature piezoelectric perovskites through statistical learning
    • Balachandran P, Broderick SR, Rajan K. 2011. Identifying the "inorganic gene" for high temperature piezoelectric perovskites through statistical learning. Proc. R. Soc. A 467:2271-90
    • (2011) Proc. R. Soc. A , vol.467 , pp. 2271-2290
    • Balachandran, P.1    Broderick, S.R.2    Rajan, K.3
  • 5
    • 84865850677 scopus 로고    scopus 로고
    • Modeling of input-output relationships for a plasma spray coating process using soft computing tools
    • Datta S, Pratihar DK, Bandyopadhyay PP. 2012. Modeling of input-output relationships for a plasma spray coating process using soft computing tools. Appl. Soft Comput. 12:3356-68
    • (2012) Appl. Soft Comput. , vol.12 , pp. 3356-3368
    • Datta, S.1    Pratihar, D.K.2    Bandyopadhyay, P.P.3
  • 6
    • 59949088973 scopus 로고    scopus 로고
    • Virtual screening of materials using neurogenetic approach: Concepts and implementation
    • Farrusseng D, Clerc F, Mirodatos C, Rakotomalala R. 2009. Virtual screening of materials using neurogenetic approach: concepts and implementation. Comput. Mater. Sci. 45:52-59
    • (2009) Comput. Mater. Sci. , vol.45 , pp. 52-59
    • Farrusseng, D.1    Clerc, F.2    Mirodatos, C.3    Rakotomalala, R.4
  • 7
    • 0040315103 scopus 로고    scopus 로고
    • An example of the use of neural computing techniques inmaterials science-The modelling of fatigue thresholds in Ni-base superalloys
    • Schoolin J, BrownM, Reed PAS. 1999. An example of the use of neural computing techniques inmaterials science-The modelling of fatigue thresholds in Ni-base superalloys. Mater. Sci. Eng. A 260:222-39
    • (1999) Mater. Sci. Eng. A , vol.260 , pp. 222-239
    • Schoolin, J.1    Brown, M.2    Reed, P.A.S.3
  • 8
    • 84867746585 scopus 로고    scopus 로고
    • Fatigue behaviors prediction method of welded joints based on soft computing methods
    • Yang X, Deng W, Zou L, Zhao H, Liu J. 2013. Fatigue behaviors prediction method of welded joints based on soft computing methods. Mater. Sci. Eng. A 559:574-82
    • (2013) Mater. Sci. Eng. A , vol.559 , pp. 574-582
    • Yang, X.1    Deng, W.2    Zou, L.3    Zhao, H.4    Liu, J.5
  • 11
    • 50249144189 scopus 로고    scopus 로고
    • Combinatorial materials sciences: Experimental strategies for accelerated knowledge discovery
    • Rajan K. 2008. Combinatorial materials sciences: experimental strategies for accelerated knowledge discovery. Annu. Rev. Mater. Res. 38:299-322
    • (2008) Annu. Rev. Mater. Res. , vol.38 , pp. 299-322
    • Rajan, K.1
  • 12
    • 12944264524 scopus 로고    scopus 로고
    • The energy landscape as a unifying theme in molecular science
    • Wales DJ. 2005. The energy landscape as a unifying theme in molecular science. Philos. Trans. R. Soc. A 363:357-75
    • (2005) Philos. Trans. R. Soc. A , vol.363 , pp. 357-375
    • Wales, D.J.1
  • 13
    • 84886996545 scopus 로고    scopus 로고
    • Commentary: TheMaterials Project: A materials genome approach to accelerating materials innovation
    • Jain A, Ping Ong S,Hautier G, Chen W, Richards WD, et al. 2013. Commentary: TheMaterials Project: A materials genome approach to accelerating materials innovation. APL Mater. 1:011002
    • (2013) APL Mater. , vol.1 , pp. 011002
    • Jain, A.1    Ping Ong, S.2    Hautier, G.3    Chen, W.4    Richards, W.D.5
  • 16
    • 80052378200 scopus 로고    scopus 로고
    • The Harvard Clean Energy Project: Large-scale computational screening and design of organic photovoltaics on theWorld Community Grid
    • Hachmann J, Olivares-Amaya R, Atahan-Evrenk S, Amador-Bedolla C, Sánchez-Carrera RS, et al. 2011. The Harvard Clean Energy Project: large-scale computational screening and design of organic photovoltaics on theWorld Community Grid. J. Phys. Chem. Lett. 2:2241-51
    • (2011) J. Phys. Chem. Lett. , vol.2 , pp. 2241-2251
    • Hachmann, J.1    Olivares-Amaya, R.2    Atahan-Evrenk, S.3    Amador-Bedolla, C.4    Sánchez-Carrera, R.S.5
  • 17
    • 84921444588 scopus 로고    scopus 로고
    • New light harvesting materials using accurate and efficient bandgap calculations
    • Castelli IE, Huser F, Pandey M, Li H, Thygesen KS, et al. 2015. New light harvesting materials using accurate and efficient bandgap calculations. Adv. Energy Mater. 5:14000915
    • (2015) Adv. Energy Mater. , vol.5 , pp. 14000915
    • Castelli, I.E.1    Huser, F.2    Pandey, M.3    Li, H.4    Thygesen, K.S.5
  • 18
    • 84904323640 scopus 로고    scopus 로고
    • Sparse representation for a potential energy surface
    • Seko A, Takahashi A, Tanaka I. 2014. Sparse representation for a potential energy surface. Phys. Rev. B 90:024101
    • (2014) Phys. Rev. B , vol.90 , pp. 024101
    • Seko, A.1    Takahashi, A.2    Tanaka, I.3
  • 19
    • 84882415695 scopus 로고    scopus 로고
    • Assessment and validation of machine learning methods for predicting molecular atomization energies
    • Hansen K, Montavon G, Biegler F, Fazli S, Rupp M, et al. 2013. Assessment and validation of machine learning methods for predicting molecular atomization energies. J. Chem. Theory Comput. 9:3404-19
    • (2013) J. Chem. Theory Comput. , vol.9 , pp. 3404-3419
    • Hansen, K.1    Montavon, G.2    Biegler, F.3    Fazli, S.4    Rupp, M.5
  • 20
    • 33751324412 scopus 로고    scopus 로고
    • Linking length scales via materials informatics
    • Liu ZK, Chen LQ, Rajan K. 2006. Linking length scales via materials informatics. JOM 58(11):42-50
    • (2006) JOM , vol.58 , Issue.11 , pp. 42-50
    • Liu, Z.K.1    Chen, L.Q.2    Rajan, K.3
  • 21
    • 84941614048 scopus 로고    scopus 로고
    • Nanoinformatics: Data-driven materials design for health and environmental needs
    • ed. MHull,DBowman. Waltham, MA: Elsevier. 2nd ed
    • Rajan K. 2014. Nanoinformatics: data-driven materials design for health and environmental needs. In Nanotechnology Environmental Health and Safety: Risks, Regulation, and Management, ed.MHull,DBowman, pp. 173-98. Waltham, MA: Elsevier. 2nd ed.
    • (2014) Nanotechnology Environmental Health and Safety: Risks, Regulation, and Management , pp. 173-198
    • Rajan, K.1
  • 22
    • 0028385414 scopus 로고
    • Fuzzy logic, neural networks and soft computing
    • Zadeh LA. 1994. Fuzzy logic, neural networks and soft computing. Commun. ACM 37:77-84
    • (1994) Commun. ACM , vol.37 , pp. 77-84
    • Zadeh, L.A.1
  • 23
    • 34248666540 scopus 로고
    • Fuzzy sets
    • Zadeh LA. 1965. Fuzzy sets. Inf. Control 8:338-53
    • (1965) Inf. Control , vol.8 , pp. 338-353
    • Zadeh, L.A.1
  • 24
    • 0028534525 scopus 로고
    • Soft computing and fuzzy logic
    • Zadeh LA. 1994. Soft computing and fuzzy logic. IEEE Softw. 11(6):48-56
    • (1994) IEEE Softw. , vol.11 , Issue.6 , pp. 48-56
    • Zadeh, L.A.1
  • 26
    • 84903711695 scopus 로고    scopus 로고
    • A review of soft computing technology applications in several mining problems
    • 222014
    • Jang H, Topal E. 2014. A review of soft computing technology applications in several mining problems. Appl. Soft Comput. 222014:638-51
    • (2014) Appl. Soft Comput. , pp. 638-651
    • Jang, H.1    Topal, E.2
  • 27
    • 0002928657 scopus 로고
    • Fuzzy decision making including unequal objectives
    • Yager RR. 1978. Fuzzy decision making including unequal objectives. Fuzzy Sets Syst. 1:87-95
    • (1978) Fuzzy Sets Syst. , vol.1 , pp. 87-95
    • Yager, R.R.1
  • 28
    • 0020340330 scopus 로고
    • Fuzzy set methodologies in multicriteria modeling
    • ed. MM Gupta, E Sanchez, New York: North-Holland
    • Hipel KW. 1982. Fuzzy set methodologies in multicriteria modeling. In Fuzzy Information and Decision Processes, ed. MM Gupta, E Sanchez, pp. 279-88. New York: North-Holland
    • (1982) Fuzzy Information and Decision Processes , pp. 279-288
    • Hipel, K.W.1
  • 29
    • 82455199200 scopus 로고    scopus 로고
    • Soft computing methods applied to combination of one-class classifiers
    • Wilk T, Wozniak M. 2012. Soft computing methods applied to combination of one-class classifiers. Neurocomputing 75:184-93
    • (2012) Neurocomputing , vol.75 , pp. 184-193
    • Wilk, T.1    Wozniak, M.2
  • 30
    • 84924104810 scopus 로고    scopus 로고
    • Mining sparse and big data by case based reasoning
    • Perner P. 2014. Mining sparse and big data by case based reasoning. Proc. Comput. Sci. 35:19-33
    • (2014) Proc. Comput. Sci. , vol.35 , pp. 19-33
    • Perner, P.1
  • 31
    • 40749134141 scopus 로고    scopus 로고
    • Soft computing in engineering design-A review
    • Saridikas KM, Dentsoras AJ. 2008. Soft computing in engineering design-A review. Adv. Eng. Inform. 22:202-21
    • (2008) Adv. Eng. Inform. , vol.22 , pp. 202-221
    • Saridikas, K.M.1    Dentsoras, A.J.2
  • 32
    • 39049110667 scopus 로고    scopus 로고
    • Onheuristics as a fundamental constituent of soft computing
    • Verdegay JL,Yager RR, Bonissone PP. 2008.Onheuristics as a fundamental constituent of soft computing. Fuzzy Sets Syst. 159:846-55
    • (2008) Fuzzy Sets Syst. , vol.159 , pp. 846-855
    • Verdegay, J.L.1    Yager, R.R.2    Bonissone, P.P.3
  • 33
    • 84891459804 scopus 로고    scopus 로고
    • Model selection and information criteria
    • ed. F Emmert-Strieb, M Dehmer. New York: Springer
    • Murata N, Park H. 2009. Model selection and information criteria. In Information Theory and Statistical Learning, ed. F Emmert-Strieb, M Dehmer, pp. 333-54. New York: Springer
    • (2009) Information Theory and Statistical Learning , pp. 333-354
    • Murata, N.1    Park, H.2
  • 34
    • 33751088019 scopus 로고    scopus 로고
    • Development of a soft computing-based framework for engineering design optimisation with quantitative and qualitative search spaces
    • OduguwaV,Roy R, FarrugiaD. 2007. Development of a soft computing-based framework for engineering design optimisation with quantitative and qualitative search spaces. Appl. Soft Comput. 7:166-88
    • (2007) Appl. Soft Comput. , vol.7 , pp. 166-188
    • Oduguwa, V.1    Roy, R.2    Farrugia, D.3
  • 39
    • 84906737796 scopus 로고    scopus 로고
    • Statistically based assessment of formation enthalpy for intermetallic compounds
    • ZhangR,Rajan K. 2014. Statistically based assessment of formation enthalpy for intermetallic compounds. Chem. Phys. Lett. 12:177-81
    • (2014) Chem. Phys. Lett. , vol.12 , pp. 177-181
    • Zhang, R.1    Rajan, K.2
  • 40
    • 84864671596 scopus 로고    scopus 로고
    • Data-driven model for estimation of friction coefficient via informatics methods
    • Bucholz EW, Kong CS, Marchman KR, Sawyer WG, Phillpot SR, et al. 2012. Data-driven model for estimation of friction coefficient via informatics methods. Tribol. Lett. 47(2):211-21
    • (2012) Tribol. Lett. , vol.47 , Issue.2 , pp. 211-221
    • Bucholz, E.W.1    Kong, C.S.2    Marchman, K.R.3    Sawyer, W.G.4    Phillpot, S.R.5
  • 41
    • 84860310024 scopus 로고    scopus 로고
    • Rational design of binary halide scintillators via data mining
    • Kong CS, Rajan K. 2012. Rational design of binary halide scintillators via data mining. Nucl. Inst. Methods Phys. Res. A 680:145-54
    • (2012) Nucl. Inst. Methods Phys. Res. A , vol.680 , pp. 145-154
    • Kong, C.S.1    Rajan, K.2
  • 42
    • 80053018651 scopus 로고    scopus 로고
    • Classification of oxide compounds through data mining density of states spectra
    • Broderick SR, Rajan K. 2011. Classification of oxide compounds through data mining density of states spectra. J. Am. Ceram. Soc. 94(9):2974-80
    • (2011) J. Am. Ceram. Soc. , vol.94 , Issue.9 , pp. 2974-2980
    • Broderick, S.R.1    Rajan, K.2
  • 43
    • 79955036999 scopus 로고    scopus 로고
    • Data mining Ti-Al semi-empirical parameters for developing reduced order models
    • Broderick S, Rajan K. 2011. Data mining Ti-Al semi-empirical parameters for developing reduced order models. Physica B 406(11):2055-60
    • (2011) Physica B , vol.406 , Issue.11 , pp. 2055-2060
    • Broderick, S.1    Rajan, K.2
  • 45
    • 84864235209 scopus 로고    scopus 로고
    • Information theoretic approach for the discovery of design rules for crystal chemistry
    • Kong CS, Luo W, Arapan S, Villars P, Iwata S, et al. 2012. Information theoretic approach for the discovery of design rules for crystal chemistry. J. Chem. Inf. Model. 52:1812-20
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 1812-1820
    • Kong, C.S.1    Luo, W.2    Arapan, S.3    Villars, P.4    Iwata, S.5
  • 46
    • 84863962549 scopus 로고    scopus 로고
    • Mapping the 'materials gene' for binary intermetallic compounds-A visualization schema for crystallographic databases
    • Kong CS, Villars P, Iwata S, Rajan K. 2012. Mapping the 'materials gene' for binary intermetallic compounds-A visualization schema for crystallographic databases. J. Comput. Sci. Discov. 5:015004
    • (2012) J. Comput. Sci. Discov. , vol.5 , pp. 015004
    • Kong, C.S.1    Villars, P.2    Iwata, S.3    Rajan, K.4
  • 48
    • 61449104901 scopus 로고    scopus 로고
    • Identification and optimization of AB2 phases using principal component analysis, evolutionary neural nets, and multiobjective genetic algorithms
    • Agarwal A, Pettersson F, Singh A, Kong CS, Saxén H, et al. 2009. Identification and optimization of AB2 phases using principal component analysis, evolutionary neural nets, and multiobjective genetic algorithms. Mater. Manuf. Process. 24(3):274-81
    • (2009) Mater. Manuf. Process. , vol.24 , Issue.3 , pp. 274-281
    • Agarwal, A.1    Pettersson, F.2    Singh, A.3    Kong, C.S.4    Saxén, H.5
  • 49
    • 57649184698 scopus 로고    scopus 로고
    • Analyzing sparse data for nitride spinels using data mining, neural networks and multiobjective genetic algorithms
    • Pettersson F, Suh C, Saxen H, Rajan K, Chakraborti N. 2009. Analyzing sparse data for nitride spinels using data mining, neural networks and multiobjective genetic algorithms. Mater. Manuf. Process. 24:2-9
    • (2009) Mater. Manuf. Process. , vol.24 , pp. 2-9
    • Pettersson, F.1    Suh, C.2    Saxen, H.3    Rajan, K.4    Chakraborti, N.5
  • 50
    • 84896774397 scopus 로고    scopus 로고
    • Discovering surface structure-chemistry relationships in catalysts via statistical learning methods
    • Andriotis AN, Mpourmpakis G, Broderick S, Rajan K,Datta S, et al. 2014. Discovering surface structure-chemistry relationships in catalysts via statistical learning methods. J. Chem. Phys. 140:094705
    • (2014) J. Chem. Phys. , vol.140 , pp. 094705
    • Andriotis, A.N.1    Mpourmpakis, G.2    Broderick, S.3    Rajan, K.4    Datta, S.5
  • 51
    • 84880474236 scopus 로고    scopus 로고
    • Informatics based uncertainty quantification in the design of inorganic scintillators
    • Ganguly S, Kong CS, Broderick SR, Rajan K. 2013. Informatics based uncertainty quantification in the design of inorganic scintillators. Mater. Manuf. Process. 28:726-32; doi: 10.1080/10426914.2012.736660
    • (2013) Mater. Manuf. Process. , vol.28 , pp. 726-732
    • Ganguly, S.1    Kong, C.S.2    Broderick, S.R.3    Rajan, K.4
  • 53
    • 0032483263 scopus 로고    scopus 로고
    • Rough sets applied to the discovery of materials knowledge
    • Jackson AG, Pawlak Z, LeClair SR. 1998. Rough sets applied to the discovery of materials knowledge. J. Alloys Compd. 279:14-21
    • (1998) J. Alloys Compd. , vol.279 , pp. 14-21
    • Jackson, A.G.1    Pawlak, Z.2    LeClair, S.R.3
  • 54
    • 0031145399 scopus 로고    scopus 로고
    • Rough set approach to knowledge-based decision support
    • Pawlak Z. 1997. Rough set approach to knowledge-based decision support. Eur. J. Oper. Res. 99:48-57
    • (1997) Eur. J. Oper. Res. , vol.99 , pp. 48-57
    • Pawlak, Z.1
  • 55
    • 33749680310 scopus 로고    scopus 로고
    • Rudiments of rough sets
    • Pawlak Z, Skowron A. 2007. Rudiments of rough sets. Inf. Sci. 177:3-27
    • (2007) Inf. Sci. , vol.177 , pp. 3-27
    • Pawlak, Z.1    Skowron, A.2
  • 58
    • 84923860141 scopus 로고    scopus 로고
    • Informatics derived materials databases for multifunctional properties
    • Broderick S, Rajan K. 2015. Informatics derived materials databases for multifunctional properties. Sci. Technol. Adv. Mater. 16:013501
    • (2015) Sci. Technol. Adv. Mater. , vol.16 , pp. 013501
    • Broderick, S.1    Rajan, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.