메뉴 건너뛰기




Volumn 4, Issue , 2013, Pages

A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries

Author keywords

[No Author keywords available]

Indexed keywords

ALUMINUM OXIDE; LITHIUM; NANOCRYSTAL; OXYGEN; PALLADIUM NANOPARTICLE;

EID: 84955572127     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/ncomms3383     Document Type: Article
Times cited : (379)

References (41)
  • 3
    • 84860745752 scopus 로고    scopus 로고
    • Electrocatalysts for nonaqueous lithium-air batteries: Status, challenges, and perspective
    • Shao, Y. et al. Electrocatalysts for nonaqueous lithium-air batteries: status, challenges, and perspective. ACS Catal. 2, 844-857 (2012).
    • (2012) ACS Catal. , vol.2 , pp. 844-857
    • Shao, Y.1
  • 4
    • 84855328636 scopus 로고    scopus 로고
    • A critical review of li/air batteries
    • Christensen, J. et al. A critical review of li/air batteries. J. Electrochem. Soc. 159, R1-R30 (2011).
    • (2011) J. Electrochem. Soc. , vol.159 , pp. R1-R30
    • Christensen, J.1
  • 5
    • 0029769438 scopus 로고    scopus 로고
    • A polymer electrolyte-based rechargeable lithium/ oxygen battery
    • Abraham, K. M. & Jiang, Z. A polymer electrolyte-based rechargeable lithium/ oxygen battery. J. Electrochem. Soc. 143, 1-5 (1996).
    • (1996) J. Electrochem. Soc. , vol.143 , pp. 1-5
    • Abraham, K.M.1    Jiang, Z.2
  • 6
    • 84874064123 scopus 로고    scopus 로고
    • Evidence for lithium superoxide-like species in the discharge product of a Li-O2 battery
    • Yang, J. et al. Evidence for lithium superoxide-like species in the discharge product of a Li-O2 battery. Phys. Chem. Chem. Phys 15, 3764-3771 (2013).
    • (2013) Phys. Chem. Chem. Phys , vol.15 , pp. 3764-3771
    • Yang, J.1
  • 7
    • 84867306029 scopus 로고    scopus 로고
    • Oxide catalysts for rechargeable high-capacity Li-O2 batteries
    • Oh, S. H. & Nazar, L. F. Oxide catalysts for rechargeable high-capacity Li-O2 batteries. Adv. Energy Mater. 2, 903-910 (2012).
    • (2012) Adv. Energy Mater. , vol.2 , pp. 903-910
    • Oh, S.H.1    Nazar, L.F.2
  • 8
    • 84255191069 scopus 로고    scopus 로고
    • Increased stability toward oxygen reduction products for lithium-air batteries with oligoether-functionalized silane electrolytes
    • Zhang, Z. et al. Increased stability toward oxygen reduction products for lithium-air batteries with oligoether-functionalized silane electrolytes. J. Phys. Chem. C 115, 25535-25542 (2011).
    • (2011) J. Phys. Chem. C , vol.115 , pp. 25535-25542
    • Zhang, Z.1
  • 9
    • 84864740853 scopus 로고    scopus 로고
    • A reversible and higherrate Li-O2 battery
    • Peng, Z., Freunberger, S. A., Chen, Y. & Bruce, P. G. A reversible and higherrate Li-O2 battery. Science 337, 563-566 (2012).
    • (2012) Science , vol.337 , pp. 563-566
    • Peng, Z.1    Freunberger, S.A.2    Chen, Y.3    Bruce, P.G.4
  • 10
    • 84859624508 scopus 로고    scopus 로고
    • Trends in the catalytic activity of transition metals for the oxygen reduction reaction by lithium
    • Dathar, G. K. P., Shelton, W. A. & Xu, Y. Trends in the catalytic activity of transition metals for the oxygen reduction reaction by lithium. J. Phys. Chem. Lett. 3, 891-895 (2012).
    • (2012) J. Phys. Chem. Lett. , vol.3 , pp. 891-895
    • Dathar, G.K.P.1    Shelton, W.A.2    Xu, Y.3
  • 11
    • 84873202085 scopus 로고    scopus 로고
    • In situ fabrication of porous-carbon-supported a-MnO2 nanorods at room temperature: Application for rechargeable Li-O2 batteries
    • Qin, Y. et al. In situ fabrication of porous-carbon-supported a-MnO2 nanorods at room temperature: application for rechargeable Li-O2 batteries. Energy Environ. Sci. 6, 519-531 (2013).
    • (2013) Energy Environ. Sci. , vol.6 , pp. 519-531
    • Qin, Y.1
  • 12
    • 36148980785 scopus 로고    scopus 로고
    • An O2 cathode for rechargeable lithium batteries: The effect of a catalyst
    • Debart, A. l., Bao, J., Armstrong, G. & Bruce, P. G. An O2 cathode for rechargeable lithium batteries: the effect of a catalyst. J. Power Sour 174, 1177-1182 (2007).
    • (2007) J. Power Sour , vol.174 , pp. 1177-1182
    • Debart, A.L.1    Bao, J.2    Armstrong, G.3    Bruce, P.G.4
  • 13
    • 53549112443 scopus 로고    scopus 로고
    • Alpha-MnO2 nanowires: A catalyst for the O2 electrode in rechargeable lithium batteries
    • Debart, A., Paterson, A. J., Bao, J. & Bruce, P. G. Alpha-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 4521-4524 (2008).
    • (2008) Angew. Chem. Int. Ed. , vol.47 , pp. 4521-4524
    • Debart, A.1    Paterson, A.J.2    Bao, J.3    Bruce, P.G.4
  • 14
    • 77955738865 scopus 로고    scopus 로고
    • Platinum gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium air batteries
    • Lu, Y.-C. et al. Platinum gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium air batteries. J. Am. Chem. Soc. 132, 12170-12171 (2010).
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 12170-12171
    • Lu, Y.-C.1
  • 15
    • 84873956968 scopus 로고    scopus 로고
    • Synthesis, characterization, and structural modeling of highcapacity, dual functioning MnO2 electrode/electrocatalysts for Li-O2 cells
    • Trahey, L. et al. Synthesis, characterization, and structural modeling of highcapacity, dual functioning MnO2 electrode/electrocatalysts for Li-O2 cells. Adv. Energy Mater. 3, 75-84 (2013).
    • (2013) Adv. Energy Mater. , vol.3 , pp. 75-84
    • Trahey, L.1
  • 16
    • 79957673636 scopus 로고    scopus 로고
    • Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes
    • Freunberger, S. A. et al. Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc. 133, 8040-8047 (2011).
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 8040-8047
    • Freunberger, S.A.1
  • 17
    • 77953970926 scopus 로고    scopus 로고
    • Rechargaeable Liair batteries with carbonate-based liquid electrolytes
    • Mizuno, F., Nakanishi, S., Kotani, Y., Yokoishi, S. & Iba, H. Rechargaeable Liair batteries with carbonate-based liquid electrolytes. Electrochemistry 78, 403-405 (2010).
    • (2010) Electrochemistry , vol.78 , pp. 403-405
    • Mizuno, F.1    Nakanishi, S.2    Kotani, Y.3    Yokoishi, S.4    Iba, H.5
  • 18
    • 84863116383 scopus 로고    scopus 로고
    • Screening for superoxide reactivity in Li-O2 batteries: Effect on Li2O2/LiOH crystallization
    • Black, R. et al. Screening for superoxide reactivity in Li-O2 batteries: effect on Li2O2/LiOH crystallization. J. Am. Chem. Soc 134, 2902-2905 (2012).
    • (2012) J. Am. Chem. Soc , vol.134 , pp. 2902-2905
    • Black, R.1
  • 19
    • 80755129311 scopus 로고    scopus 로고
    • On the efficacy of electrocatalysis in nonaqueous lithium-O2 batteries
    • McCloskey, B. D. et al. On the efficacy of electrocatalysis in nonaqueous lithium-O2 batteries. J. Am. Chem. Soc. 133, 18038-18041 (2011).
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 18038-18041
    • McCloskey, B.D.1
  • 20
    • 84871970329 scopus 로고    scopus 로고
    • The role of catalysts and peroxide oxidation in lithium-oxygen batteries
    • Black, R., Lee, J.-H., Adams, B., Mims, C. A. & Nazar, L. F. The role of catalysts and peroxide oxidation in lithium-oxygen batteries. Angew. Chem. Int. Ed. 125, 410-414 (2013).
    • (2013) Angew. Chem. Int. Ed. , vol.125 , pp. 410-414
    • Black, R.1    Lee, J.-H.2    Adams, B.3    Mims, C.A.4    Nazar, L.F.5
  • 21
    • 84855927066 scopus 로고    scopus 로고
    • Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not
    • Radin, M. D., Rodriguez, J. F., Tian, F. & Siegel, D. J. Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not. J. Am. Chem. Soc. 134, 1093-1103 (2012).
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 1093-1103
    • Radin, M.D.1    Rodriguez, J.F.2    Tian, F.3    Siegel, D.J.4
  • 22
    • 83455177061 scopus 로고    scopus 로고
    • Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O(2) batteries
    • Viswanathan, V. et al. Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O(2) batteries. J. Chem. Phys. 135, 214704-214714 (2011).
    • (2011) J. Chem. Phys. , vol.135 , pp. 214704-214714
    • Viswanathan, V.1
  • 23
    • 84857740616 scopus 로고    scopus 로고
    • Low hole polaron migration barrier in lithium peroxide
    • Ong, S. P., Mo, Y. & Ceder, G. Low hole polaron migration barrier in lithium peroxide. Phys. Rev. B 85, 081105 (2012).
    • (2012) Phys. Rev. B , vol.85 , pp. 081105
    • Ong, S.P.1    Mo, Y.2    Ceder, G.3
  • 24
    • 84860191490 scopus 로고    scopus 로고
    • Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries
    • McCloskey, B. D. et al. Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries. J. Phys. Chem. Lett. 3, 997-1001 (2012).
    • (2012) J. Phys. Chem. Lett. , vol.3 , pp. 997-1001
    • McCloskey, B.D.1
  • 26
    • 84872808244 scopus 로고    scopus 로고
    • Theoretical evidence for low kinetic overpotentials in Li-O2 electrochemistry
    • Hummelshoj, J. S., Luntz, A. C. & Norskov, J. K. Theoretical evidence for low kinetic overpotentials in Li-O2 electrochemistry. J. Chem. Phys. 138, 034703-034712 (2013).
    • (2013) J. Chem. Phys. , vol.138 , pp. 034703-034712
    • Hummelshoj, J.S.1    Luntz, A.C.2    Norskov, J.K.3
  • 27
    • 84872737968 scopus 로고    scopus 로고
    • Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends
    • Miikkulainen, V., Leskela, M., Ritala, M. & Puurunen, R. L. Crystallinity of inorganic films grown by atomic layer deposition: overview and general trends. J. Appl. Phys. 113, 021301-021101 (2013).
    • (2013) J. Appl. Phys. , vol.113 , pp. 021301-021101
    • Miikkulainen, V.1    Leskela, M.2    Ritala, M.3    Puurunen, R.L.4
  • 28
    • 0141567439 scopus 로고    scopus 로고
    • Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition
    • Elam, J. W., Routkevitch, D., Mardilovich, P. P. & George, S. M. Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition. Chem. Mater. 15, 3507-3517 (2003).
    • (2003) Chem. Mater. , vol.15 , pp. 3507-3517
    • Elam, J.W.1    Routkevitch, D.2    Mardilovich, P.P.3    George, S.M.4
  • 29
    • 4043099659 scopus 로고    scopus 로고
    • Formation of TiO2 and ZrO2 nanotubes using atomic layer deposition with ultraprecise control of the wall thickness
    • Shin, H., Jeong, D. K., Lee, J., Sung, M. M. & Kim, J. Formation of TiO2 and ZrO2 nanotubes using atomic layer deposition with ultraprecise control of the wall thickness. Adv. Mater. 16, 1197-1200 (2004).
    • (2004) Adv. Mater. , vol.16 , pp. 1197-1200
    • Shin, H.1    Jeong, D.K.2    Lee, J.3    Sung, M.M.4    Kim, J.5
  • 30
    • 4143057920 scopus 로고    scopus 로고
    • Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores
    • Chen, P. et al. Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores. Nano. Lett. 4, 1333-1337 (2004).
    • (2004) Nano. Lett. , vol.4 , pp. 1333-1337
    • Chen, P.1
  • 31
    • 79958210829 scopus 로고    scopus 로고
    • Subnanometer palladium particles synthesized by atomic layer deposition
    • Feng, H., Libera, J. A., Stair, P. C., Miller, J. T. & Elam, J. W. Subnanometer palladium particles synthesized by atomic layer deposition. ACS Catal. 1, 665-673 (2011).
    • (2011) ACS Catal. , vol.1 , pp. 665-673
    • Feng, H.1    Libera, J.A.2    Stair, P.C.3    Miller, J.T.4    Elam, J.W.5
  • 32
    • 77950229150 scopus 로고    scopus 로고
    • Low-temperature ABC-type atomic layer deposition: Synthesis of highly uniform ultrafine supported metal nanoparticles
    • Lu, J. & Stair, P. C. Low-temperature ABC-type atomic layer deposition: synthesis of highly uniform ultrafine supported metal nanoparticles. Angew. Chem. Int. Ed. 49, 2547-2551 (2010).
    • (2010) Angew. Chem. Int. Ed. , vol.49 , pp. 2547-2551
    • Lu, J.1    Stair, P.C.2
  • 33
    • 63149165884 scopus 로고    scopus 로고
    • Controlled growth of platinum nanoparticles on strontium titanate nanocubes by atomic layer deposition
    • Christensen, S. T. et al. Controlled growth of platinum nanoparticles on strontium titanate nanocubes by atomic layer deposition. Small 5, 750-757 (2009).
    • (2009) Small , vol.5 , pp. 750-757
    • Christensen, S.T.1
  • 34
    • 77952525210 scopus 로고    scopus 로고
    • Palladium catalysts synthesized by atomic layer deposition for methanol decomposition
    • Feng, H., Elam, J. W., Libera, J. A., Setthapun, W. & Stair, P. C. Palladium catalysts synthesized by atomic layer deposition for methanol decomposition. Chem. Mater. 22, 3133-3142 (2010).
    • (2010) Chem. Mater. , vol.22 , pp. 3133-3142
    • Feng, H.1    Elam, J.W.2    Libera, J.A.3    Setthapun, W.4    Stair, P.C.5
  • 35
    • 46049105319 scopus 로고    scopus 로고
    • Atomic layer deposition of metal oxides on pristine and functionalized graphene
    • Wang, X., Tabakman, S. M. & Dai, H. Atomic layer deposition of metal oxides on pristine and functionalized graphene. J. Am. Chem. Soc. 130, 8152-8153 (2008).
    • (2008) J. Am. Chem. Soc. , vol.130 , pp. 8152-8153
    • Wang, X.1    Tabakman, S.M.2    Dai, H.3
  • 36
    • 38049080981 scopus 로고    scopus 로고
    • Atomic-layer-deposited nanostructures for graphene-based nanoelectronics
    • Xuan, Y. et al. Atomic-layer-deposited nanostructures for graphene-based nanoelectronics. Appl. Phys. Lett. 92, 013101-013103 (2008).
    • (2008) Appl. Phys. Lett. , vol.92 , pp. 013101-013103
    • Xuan, Y.1
  • 37
    • 84863931824 scopus 로고    scopus 로고
    • Quantitative in situ infrared analysis of reactions between trimethylaluminum and polymers during Al2O3 atomic layer deposition
    • Gong, B. & Parsons, G. N. Quantitative in situ infrared analysis of reactions between trimethylaluminum and polymers during Al2O3 atomic layer deposition. J. Mat. Chem. 22, 15672-15682 (2012).
    • (2012) J. Mat. Chem. , vol.22 , pp. 15672-15682
    • Gong, B.1    Parsons, G.N.2
  • 38
    • 84872301023 scopus 로고    scopus 로고
    • The effect of oxygen crossover on the anode of a Li-O2 battery using an ether-based solvent: Insights from experimental and computational studies
    • Assary, R. S. et al. The effect of oxygen crossover on the anode of a Li-O2 battery using an ether-based solvent: insights from experimental and computational studies. ChemSusChem 6, 51-55 (2013).
    • (2013) ChemSusChem , vol.6 , pp. 51-55
    • Assary, R.S.1
  • 39
    • 79961004829 scopus 로고    scopus 로고
    • All-carbonnanofiber electrodes for high-energy rechargeable Li-O2 batteries
    • Mitchell, R. R., Gallant, B. M., Thompson, C. V. & Shao-Horn, Y. All-carbonnanofiber electrodes for high-energy rechargeable Li-O2 batteries. Energy Environ. Sci. 4, 2952-2958 (2011).
    • (2011) Energy Environ. Sci. , vol.4 , pp. 2952-2958
    • Mitchell, R.R.1    Gallant, B.M.2    Thompson, C.V.3    Shao-Horn, Y.4
  • 40
    • 2942574805 scopus 로고    scopus 로고
    • Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors
    • Lu, Y. et al. Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors. Chem. Phys. Lett. 391, 344-348 (2004).
    • (2004) Chem. Phys. Lett. , vol.391 , pp. 344-348
    • Lu, Y.1
  • 41
    • 84876831348 scopus 로고    scopus 로고
    • Interactions of dimethoxy ethane with Li2O2 clusters and likely decomposition mechanisms for Li-O2 batteries
    • Assary, R. S., Lau, K. C., Amine, K., Sun, S.-K. & Curtiss, L. A. Interactions of dimethoxy ethane with Li2O2 clusters and likely decomposition mechanisms for Li-O2 batteries. J. Phys. Chem. C 117, 8041-8090 (2013).
    • (2013) J. Phys. Chem. C , vol.117 , pp. 8041-8090
    • Assary, R.S.1    Lau, K.C.2    Amine, K.3    Sun, S.-K.4    Curtiss, L.A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.