메뉴 건너뛰기




Volumn 2016, Issue 1, 2016, Pages

Cross-platform normalization of microarray and RNA-seq data for machine learning applications

Author keywords

Cross platform normalization; Distribution; Gene expression; Machine learning; Microarray; Nonparanormal transformation; Normalization; Quantile normalization; RNA sequencing; Training

Indexed keywords

ALGORITHM; ARTICLE; BIOINFORMATICS; BIOTRANSFORMATION; EVALUATION STUDY; GENE EXPRESSION; MACHINE LEARNING; MICROARRAY ANALYSIS; NONHUMAN; PROBABILITY;

EID: 84955569567     PISSN: None     EISSN: 21678359     Source Type: Journal    
DOI: 10.7717/peerj.1621     Document Type: Article
Times cited : (70)

References (38)
  • 3
    • 0037316303 scopus 로고    scopus 로고
    • A comparison of normalization methods for high density oligonucleotide array data based on variance and bias
    • Bolstad BM, Irizarry RA, Astrand M, Speed TP. 2003. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19(2):185-193 DOI 10.1093/bioinformatics/19.2.185.
    • (2003) Bioinformatics , vol.19 , Issue.2 , pp. 185-193
    • Bolstad, B.M.1    Irizarry, R.A.2    Astrand, M.3    Speed, T.P.4
  • 4
    • 84877028141 scopus 로고    scopus 로고
    • Comprehensive molecular portraits of human breast tumours
    • Cancer Genome Atlas Network. 2012. Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61-70 DOI 10.1038/nature11412.
    • (2012) Nature , vol.490 , Issue.7418 , pp. 61-70
  • 7
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Friedman J, Hastie T, Tibshirani R. 2010. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1):1-22.
    • (2010) Journal of Statistical Software , vol.33 , Issue.1 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 8
    • 84897951842 scopus 로고    scopus 로고
    • Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines
    • Geeleher P, Cox NJ, Huang RS. 2014. Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biology 15(3):R47 DOI 10.1186/gb-2014-15-3-r47.
    • (2014) Genome Biology , vol.15 , Issue.3 , pp. R47
    • Geeleher, P.1    Cox, N.J.2    Huang, R.S.3
  • 10
    • 84936124729 scopus 로고    scopus 로고
    • Quantro: a data-driven approach to guide the choice of an appropriate normalization method
    • Hicks SC, Irizarry RA. 2015. Quantro: a data-driven approach to guide the choice of an appropriate normalization method. Genome Biology 16(1):117 DOI 10.1186/s13059-015-0679-0.
    • (2015) Genome Biology , vol.16 , Issue.1 , pp. 117
    • Hicks, S.C.1    Irizarry, R.A.2
  • 11
    • 46249093049 scopus 로고    scopus 로고
    • The sleipnir library for computational functional genomics
    • Huttenhower C, Schroeder M, Chikina MD, Troyanskaya OG. 2008. The sleipnir library for computational functional genomics. Bioinformatics 24(13):1559-1561 DOI 10.1093/bioinformatics/btn237.
    • (2008) Bioinformatics , vol.24 , Issue.13 , pp. 1559-1561
    • Huttenhower, C.1    Schroeder, M.2    Chikina, M.D.3    Troyanskaya, O.G.4
  • 14
    • 84896735766 scopus 로고    scopus 로고
    • Voom: precision weights unlock linear model analysis tools for RNA-seq read counts
    • Law CW, Chen Y, Shi W, Smyth GK. 2014. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biology 15(2):R29 DOI 10.1186/gb-2014-15-2-r29.
    • (2014) Genome Biology , vol.15 , Issue.2 , pp. R29
    • Law, C.W.1    Chen, Y.2    Shi, W.3    Smyth, G.K.4
  • 16
    • 84879049361 scopus 로고    scopus 로고
    • Sparse logistic regression with a L1/2 penalty for gene selection in cancer classification
    • Liang Y, Liu C, Luan X-Z, Leung K-S, Chan T-M, Xu Z-B, Zhang H. 2013. Sparse logistic regression with a L1/2 penalty for gene selection in cancer classification. BMC Bioinformatics 14(1):198 DOI 10.1186/1471-2105-14-198.
    • (2013) BMC Bioinformatics , vol.14 , Issue.1 , pp. 198
    • Liang, Y.1    Liu, C.2    Luan, X.-Z.3    Leung, K.-S.4    Chan, T.-M.5    Xu, Z.-B.6    Zhang, H.7
  • 17
    • 70450277253 scopus 로고    scopus 로고
    • The nonparanormal: semiparametric estimation of high dimensional undirected graphs
    • Liu H, Lafferty J, Wasserman L. 2009. The nonparanormal: semiparametric estimation of high dimensional undirected graphs. Journal of Machine Learning Research 10:2295-2328.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 2295-2328
    • Liu, H.1    Lafferty, J.2    Wasserman, L.3
  • 19
    • 79957665988 scopus 로고    scopus 로고
    • Microarrays, deep sequencing and the true measure of the transcriptome
    • Malone JH, Oliver B. 2011. Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biology 9:34 DOI 10.1186/1741-7007-9-34.
    • (2011) BMC Biology , vol.9 , pp. 34
    • Malone, J.H.1    Oliver, B.2
  • 23
    • 78650649545 scopus 로고    scopus 로고
    • Vienna, Austria: R Foundation for Statistical Computing
    • R Core Team. 2015. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Available from http://www.R-project.org/.
    • (2015) R: A Language and Environment for Statistical Computing
  • 26
    • 84929155489 scopus 로고    scopus 로고
    • Pan-cancer stratification of solid human epithelial tumors and cancer cell lines reveals commonalities and tissue-specific features of the CpG island methylator phenotype
    • Sánchez-Vega F, Gotea V, Margolin G, Elnitski L. 2015. Pan-cancer stratification of solid human epithelial tumors and cancer cell lines reveals commonalities and tissue-specific features of the CpG island methylator phenotype. Epigenetics & Chromatin 8(1):14 DOI 10.1186/s13072-015-0007-7.
    • (2015) Epigenetics & Chromatin , vol.8 , Issue.1 , pp. 14
    • Sánchez-Vega, F.1    Gotea, V.2    Margolin, G.3    Elnitski, L.4
  • 27
    • 84971231452 scopus 로고    scopus 로고
    • Unsupervised feature construction and knowledge extraction from genome-wide assays of breast cancer with denoising autoencoders
    • Tan J, Ung M, Cheng C, Greene C. 2015. Unsupervised feature construction and knowledge extraction from genome-wide assays of breast cancer with denoising autoencoders. Proceedings of PSB 2015. Pacific Symposium on Biocomputing 132-143.
    • (2015) Proceedings of PSB 2015. Pacific Symposium on Biocomputing , pp. 132-143
    • Tan, J.1    Ung, M.2    Cheng, C.3    Greene, C.4
  • 29
    • 84877028141 scopus 로고    scopus 로고
    • Comprehensive molecular portraits of human breast tumours
    • The Cancer Genome Atlas. 2012. Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61-70 DOI 10.1038/nature11412.
    • (2012) Nature , vol.490 , Issue.7418 , pp. 61-70
  • 34
    • 84930673657 scopus 로고    scopus 로고
    • Probe region expression estimation for RNA-seq data for improved microarray comparability
    • Uziela K, Honkela A. 2015. Probe region expression estimation for RNA-seq data for improved microarray comparability. PLoS ONE 10(5):e126545 DOI 10.1371/journal.pone.0126545.
    • (2015) PLoS ONE , vol.10 , Issue.5
    • Uziela, K.1    Honkela, A.2
  • 37
    • 57749195712 scopus 로고    scopus 로고
    • RNA-Seq: a revolutionary tool for transcriptomics
    • Wang Z, Gerstein M, Snyder M. 2010. RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics 10(1):57-63 DOI 10.1038/nrg2484.RNA-Seq.
    • (2010) Nature Reviews Genetics , vol.10 , Issue.1 , pp. 57-63
    • Wang, Z.1    Gerstein, M.2    Snyder, M.3
  • 38
    • 84937541141 scopus 로고    scopus 로고
    • RNA-seq accurately identifies cancer biomarker signatures to distinguish tissue of origin
    • Wei IH, Shi Y, Jiang H, Kumar-Sinha C, Chinnaiyan AM. 2014. RNA-seq accurately identifies cancer biomarker signatures to distinguish tissue of origin. Neoplasia 16(11):918-927 DOI 10.1016/j.neo.2014.09.007.
    • (2014) Neoplasia , vol.16 , Issue.11 , pp. 918-927
    • Wei, I.H.1    Shi, Y.2    Jiang, H.3    Kumar-Sinha, C.4    Chinnaiyan, A.M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.