-
1
-
-
84899734963
-
Comprehensive analysis of transcriptome variation uncovers known and novel driver events in t-cell acute lymphoblastic leukemia
-
Atak ZK, Gianfelici V, Hulselmans G, De Keersmaecker K, Devasia AG, Geerdens E, Mentens N, Chiaretti S, Durinck K, Uyttebroeck A, Vandenberghe P, Wlodarska I, Cloos J, Foà R, Speleman F, Cools J, Aerts S. 2013. Comprehensive analysis of transcriptome variation uncovers known and novel driver events in t-cell acute lymphoblastic leukemia. PLoS Genetics 9(12):e1003997 DOI 10.1371/journal.pgen.1003997.
-
(2013)
PLoS Genetics
, vol.9
, Issue.12
-
-
Atak, Z.K.1
Gianfelici, V.2
Hulselmans, G.3
De Keersmaecker, K.4
Devasia, A.G.5
Geerdens, E.6
Mentens, N.7
Chiaretti, S.8
Durinck, K.9
Uyttebroeck, A.10
Vandenberghe, P.11
Wlodarska, I.12
Cloos, J.13
Foà, R.14
Speleman, F.15
Cools, J.16
Aerts, S.17
-
3
-
-
0037316303
-
A comparison of normalization methods for high density oligonucleotide array data based on variance and bias
-
Bolstad BM, Irizarry RA, Astrand M, Speed TP. 2003. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19(2):185-193 DOI 10.1093/bioinformatics/19.2.185.
-
(2003)
Bioinformatics
, vol.19
, Issue.2
, pp. 185-193
-
-
Bolstad, B.M.1
Irizarry, R.A.2
Astrand, M.3
Speed, T.P.4
-
4
-
-
84877028141
-
Comprehensive molecular portraits of human breast tumours
-
Cancer Genome Atlas Network. 2012. Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61-70 DOI 10.1038/nature11412.
-
(2012)
Nature
, vol.490
, Issue.7418
, pp. 61-70
-
-
-
5
-
-
84861527388
-
The genomic and transcriptomic architecture of 2, 000 breast tumours reveals novel subgroups
-
Curtis C, Shah SP, Chin S-F, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, Gräf S, Ha G, Haffari G, Bashashati A, Russell R, McKinney S. METABRIC Group, Langerød A, Green A, Provenzano E, Wishart G, Pinder S, Watson P, Markowetz F, Murphy L, Ellis I, Purushotham A, Børresen-Dale AL-L, Brenton JD, Tavaré S, Caldas C, Aparicio S. 2012. The genomic and transcriptomic architecture of 2, 000 breast tumours reveals novel subgroups. Nature 486(7403):346-352 DOI 10.1038/nature10983.
-
(2012)
Nature
, vol.486
, Issue.7403
, pp. 346-352
-
-
Curtis, C.1
Shah, S.P.2
Chin, S.-F.3
Turashvili, G.4
Rueda, O.M.5
Dunning, M.J.6
Speed, D.7
Lynch, A.G.8
Samarajiwa, S.9
Yuan, Y.10
Gräf, S.11
Ha, G.12
Haffari, G.13
Bashashati, A.14
Russell, R.15
McKinney, S.16
Langerød, A.17
Green, A.18
Provenzano, E.19
Wishart, G.20
Pinder, S.21
Watson, P.22
Markowetz, F.23
Murphy, L.24
Ellis, I.25
Purushotham, A.26
Børresen-Dale, A.L.-L.27
Brenton, J.D.28
Tavaré, S.29
Caldas, C.30
Aparicio, S.31
more..
-
6
-
-
84926454082
-
A genomic approach to study down syndrome and cancer inverse comorbidity: untangling the chromosome 21
-
ForeVs-Martos J, Cervera-Vidal R, Chirivella E, Ramos-Jarero A, Climent J. 2015. A genomic approach to study down syndrome and cancer inverse comorbidity: untangling the chromosome 21. Frontiers in Physiology 6:10 DOI 10.3389/fphys.2015.00010.
-
(2015)
Frontiers in Physiology
, vol.6
, pp. 10
-
-
ForeVs-Martos, J.1
Cervera-Vidal, R.2
Chirivella, E.3
Ramos-Jarero, A.4
Climent, J.5
-
7
-
-
77950537175
-
Regularization paths for generalized linear models via coordinate descent
-
Friedman J, Hastie T, Tibshirani R. 2010. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1):1-22.
-
(2010)
Journal of Statistical Software
, vol.33
, Issue.1
, pp. 1-22
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
8
-
-
84897951842
-
Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines
-
Geeleher P, Cox NJ, Huang RS. 2014. Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biology 15(3):R47 DOI 10.1186/gb-2014-15-3-r47.
-
(2014)
Genome Biology
, vol.15
, Issue.3
, pp. R47
-
-
Geeleher, P.1
Cox, N.J.2
Huang, R.S.3
-
9
-
-
84876552099
-
The UCSC cancer genomics browser
-
Goldman M, Craft B, Swatloski T, Ellrott K, Cline M, Diekhans M, Ma S, Wilks C, Stuart J, Haussler D, Zhu J. 2013. The UCSC cancer genomics browser. Nucleic Acids Research 41(D1): D949-D954 DOI 10.1093/nar/gks1008.
-
(2013)
Nucleic Acids Research
, vol.41
, Issue.D1
, pp. D949-D954
-
-
Goldman, M.1
Craft, B.2
Swatloski, T.3
Ellrott, K.4
Cline, M.5
Diekhans, M.6
Ma, S.7
Wilks, C.8
Stuart, J.9
Haussler, D.10
Zhu, J.11
-
10
-
-
84936124729
-
Quantro: a data-driven approach to guide the choice of an appropriate normalization method
-
Hicks SC, Irizarry RA. 2015. Quantro: a data-driven approach to guide the choice of an appropriate normalization method. Genome Biology 16(1):117 DOI 10.1186/s13059-015-0679-0.
-
(2015)
Genome Biology
, vol.16
, Issue.1
, pp. 117
-
-
Hicks, S.C.1
Irizarry, R.A.2
-
11
-
-
46249093049
-
The sleipnir library for computational functional genomics
-
Huttenhower C, Schroeder M, Chikina MD, Troyanskaya OG. 2008. The sleipnir library for computational functional genomics. Bioinformatics 24(13):1559-1561 DOI 10.1093/bioinformatics/btn237.
-
(2008)
Bioinformatics
, vol.24
, Issue.13
, pp. 1559-1561
-
-
Huttenhower, C.1
Schroeder, M.2
Chikina, M.D.3
Troyanskaya, O.G.4
-
13
-
-
84942612935
-
Machine learning applications in cancer prognosis and prediction
-
Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. 2014. Machine learning applications in cancer prognosis and prediction. Computational and Structural Biotechnology Journal 13:8-17 DOI 10.1016/j.csbj.2014.11.005.
-
(2014)
Computational and Structural Biotechnology Journal
, vol.13
, pp. 8-17
-
-
Kourou, K.1
Exarchos, T.P.2
Exarchos, K.P.3
Karamouzis, M.V.4
Fotiadis, D.I.5
-
14
-
-
84896735766
-
Voom: precision weights unlock linear model analysis tools for RNA-seq read counts
-
Law CW, Chen Y, Shi W, Smyth GK. 2014. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biology 15(2):R29 DOI 10.1186/gb-2014-15-2-r29.
-
(2014)
Genome Biology
, vol.15
, Issue.2
, pp. R29
-
-
Law, C.W.1
Chen, Y.2
Shi, W.3
Smyth, G.K.4
-
15
-
-
84938909356
-
Development of a drugresponse modeling framework to identify cell line derived translational biomarkers that can predict treatment outcome to erlotinib or sorafenib
-
Li B, Shin H, Gulbekyan G, Pustovalova O, Nikolsky Y, Hope A, Bessarabova M, Schu M, Kolpakova-Hart E, Merberg D, Dorner A, Trepicchio WL. 2015. Development of a drugresponse modeling framework to identify cell line derived translational biomarkers that can predict treatment outcome to erlotinib or sorafenib. PLoS ONE 10(6):e130700 DOI 10.1371/journal.pone.0130700.
-
(2015)
PLoS ONE
, vol.10
, Issue.6
-
-
Li, B.1
Shin, H.2
Gulbekyan, G.3
Pustovalova, O.4
Nikolsky, Y.5
Hope, A.6
Bessarabova, M.7
Schu, M.8
Kolpakova-Hart, E.9
Merberg, D.10
Dorner, A.11
Trepicchio, W.L.12
-
16
-
-
84879049361
-
Sparse logistic regression with a L1/2 penalty for gene selection in cancer classification
-
Liang Y, Liu C, Luan X-Z, Leung K-S, Chan T-M, Xu Z-B, Zhang H. 2013. Sparse logistic regression with a L1/2 penalty for gene selection in cancer classification. BMC Bioinformatics 14(1):198 DOI 10.1186/1471-2105-14-198.
-
(2013)
BMC Bioinformatics
, vol.14
, Issue.1
, pp. 198
-
-
Liang, Y.1
Liu, C.2
Luan, X.-Z.3
Leung, K.-S.4
Chan, T.-M.5
Xu, Z.-B.6
Zhang, H.7
-
17
-
-
70450277253
-
The nonparanormal: semiparametric estimation of high dimensional undirected graphs
-
Liu H, Lafferty J, Wasserman L. 2009. The nonparanormal: semiparametric estimation of high dimensional undirected graphs. Journal of Machine Learning Research 10:2295-2328.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 2295-2328
-
-
Liu, H.1
Lafferty, J.2
Wasserman, L.3
-
19
-
-
79957665988
-
Microarrays, deep sequencing and the true measure of the transcriptome
-
Malone JH, Oliver B. 2011. Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biology 9:34 DOI 10.1186/1741-7007-9-34.
-
(2011)
BMC Biology
, vol.9
, pp. 34
-
-
Malone, J.H.1
Oliver, B.2
-
20
-
-
84875923909
-
Comparative RNA-seq and microarray analysis of gene expression changes in B-cell lymphomas of canis familiaris
-
Mooney M, Bond J, Monks N, Eugster E, Cherba D, Berlinski P, Kamerling S, Marotti K, Simpson H, Rusk T, TembeW, Legendre C, Benson H, LiangW, Webb CP. 2013. Comparative RNA-seq and microarray analysis of gene expression changes in B-cell lymphomas of canis familiaris. PLoS ONE 8(4):e61088 DOI 10.1371/journal.pone.0061088.
-
(2013)
PLoS ONE
, vol.8
, Issue.4
-
-
Mooney, M.1
Bond, J.2
Monks, N.3
Eugster, E.4
Cherba, D.5
Berlinski, P.6
Kamerling, S.7
Marotti, K.8
Simpson, H.9
Rusk, T.10
Tembe, W.11
Legendre, C.12
Benson, H.13
Liang, W.14
Webb, C.P.15
-
21
-
-
80052714543
-
A unifying view on dataset shift in classification
-
Moreno-Torres JG, Raeder T, Alaiz-Rodríguez R, Chawla NV, Herrera F. 2012. A unifying view on dataset shift in classification. Pattern Recognition 45(1):521-530 DOI 10.1016/j.patcog.2011.06.019.
-
(2012)
Pattern Recognition
, vol.45
, Issue.1
, pp. 521-530
-
-
Moreno-Torres, J.G.1
Raeder, T.2
Alaiz-Rodríguez, R.3
Chawla, N.V.4
Herrera, F.5
-
22
-
-
84896730409
-
Gene expression, single nucleotide variant and fusion transcript discovery in archival material from breast tumors
-
Norton N, Sun Z, Asmann YW, Serie DJ, Necela BM, Bhagwate A, Jen J, Eckloff BW, Kalari KR, Thompson KJ, Carr JM, Kachergus JM, Geiger XJ, Perez EA, Thompson EA. 2013. Gene expression, single nucleotide variant and fusion transcript discovery in archival material from breast tumors. PLoS ONE 8(11):e81925 DOI 10.1371/journal.pone.0081925.
-
(2013)
PLoS ONE
, vol.8
, Issue.11
-
-
Norton, N.1
Sun, Z.2
Asmann, Y.W.3
Serie, D.J.4
Necela, B.M.5
Bhagwate, A.6
Jen, J.7
Eckloff, B.W.8
Kalari, K.R.9
Thompson, K.J.10
Carr, J.M.11
Kachergus, J.M.12
Geiger, X.J.13
Perez, E.A.14
Thompson, E.A.15
-
23
-
-
78650649545
-
-
Vienna, Austria: R Foundation for Statistical Computing
-
R Core Team. 2015. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Available from http://www.R-project.org/.
-
(2015)
R: A Language and Environment for Statistical Computing
-
-
-
24
-
-
84926507971
-
Limma powers differential expression analyses for RNA-sequencing and microarray studies
-
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. 2015. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research 43(7):e47.
-
(2015)
Nucleic Acids Research
, vol.43
, Issue.7
-
-
Ritchie, M.E.1
Phipson, B.2
Wu, D.3
Hu, Y.4
Law, C.W.5
Shi, W.6
Smyth, G.K.7
-
25
-
-
84876097557
-
ArrayExpress update-trends in database growth and links to data analysis tools
-
Rustici G, Kolesnikov N, Brandizi M, Burdett T, Dylag M, Emam I, Farne A, Hastings E, Ison J, Keays M, Kurbatova N, Malone J, Mani R, Mupo A, Pereira RP, Pilicheva E, Rung J, Sharma A, Tang AY, Ternent T, Tikhonov T, Welter D, Williams E, Brazma A, Parkinson H, Sarkans U. 2013. ArrayExpress update-trends in database growth and links to data analysis tools. Nucleic Acids Research 41(Database issue):D987-D990 DOI 10.1093/nar/gks1174.
-
(2013)
Nucleic Acids Research
, vol.41
, Issue.DATABASE ISSUE
, pp. D987-D990
-
-
Rustici, G.1
Kolesnikov, N.2
Brandizi, M.3
Burdett, T.4
Dylag, M.5
Emam, I.6
Farne, A.7
Hastings, E.8
Ison, J.9
Keays, M.10
Kurbatova, N.11
Malone, J.12
Mani, R.13
Mupo, A.14
Pereira, R.P.15
Pilicheva, E.16
Rung, J.17
Sharma, A.18
Tang, A.Y.19
Ternent, T.20
Tikhonov, T.21
Welter, D.22
Williams, E.23
Brazma, A.24
Parkinson, H.25
Sarkans, U.26
more..
-
26
-
-
84929155489
-
Pan-cancer stratification of solid human epithelial tumors and cancer cell lines reveals commonalities and tissue-specific features of the CpG island methylator phenotype
-
Sánchez-Vega F, Gotea V, Margolin G, Elnitski L. 2015. Pan-cancer stratification of solid human epithelial tumors and cancer cell lines reveals commonalities and tissue-specific features of the CpG island methylator phenotype. Epigenetics & Chromatin 8(1):14 DOI 10.1186/s13072-015-0007-7.
-
(2015)
Epigenetics & Chromatin
, vol.8
, Issue.1
, pp. 14
-
-
Sánchez-Vega, F.1
Gotea, V.2
Margolin, G.3
Elnitski, L.4
-
27
-
-
84971231452
-
Unsupervised feature construction and knowledge extraction from genome-wide assays of breast cancer with denoising autoencoders
-
Tan J, Ung M, Cheng C, Greene C. 2015. Unsupervised feature construction and knowledge extraction from genome-wide assays of breast cancer with denoising autoencoders. Proceedings of PSB 2015. Pacific Symposium on Biocomputing 132-143.
-
(2015)
Proceedings of PSB 2015. Pacific Symposium on Biocomputing
, pp. 132-143
-
-
Tan, J.1
Ung, M.2
Cheng, C.3
Greene, C.4
-
29
-
-
84877028141
-
Comprehensive molecular portraits of human breast tumours
-
The Cancer Genome Atlas. 2012. Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61-70 DOI 10.1038/nature11412.
-
(2012)
Nature
, vol.490
, Issue.7418
, pp. 61-70
-
-
-
33
-
-
0034960264
-
Missing value estimation methods for DNA microarrays
-
Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein D, Altman RB. 2001. Missing value estimation methods for DNA microarrays. Bioinformatics 17(6):520-525 DOI 10.1093/bioinformatics/17.6.520.
-
(2001)
Bioinformatics
, vol.17
, Issue.6
, pp. 520-525
-
-
Troyanskaya, O.1
Cantor, M.2
Sherlock, G.3
Brown, P.4
Hastie, T.5
Tibshirani, R.6
Botstein, D.7
Altman, R.B.8
-
34
-
-
84930673657
-
Probe region expression estimation for RNA-seq data for improved microarray comparability
-
Uziela K, Honkela A. 2015. Probe region expression estimation for RNA-seq data for improved microarray comparability. PLoS ONE 10(5):e126545 DOI 10.1371/journal.pone.0126545.
-
(2015)
PLoS ONE
, vol.10
, Issue.5
-
-
Uziela, K.1
Honkela, A.2
-
35
-
-
33144486498
-
Syntren: a generator of synthetic gene expression data for design and analysis of structure learning algorithms
-
Van den Bulcke T, Van Leemput K, Naudts B, van Remortel P, Ma H, Verschoren A, De Moor B, Marchal K. 2006. Syntren: a generator of synthetic gene expression data for design and analysis of structure learning algorithms. BMC Bioinformatics 7(1):43 DOI 10.1186/1471-2105-7-43.
-
(2006)
BMC Bioinformatics
, vol.7
, Issue.1
, pp. 43
-
-
Van den Bulcke, T.1
Van Leemput, K.2
Naudts, B.3
van Remortel, P.4
Ma, H.5
Verschoren, A.6
De Moor, B.7
Marchal, K.8
-
36
-
-
84912527013
-
The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance
-
Wang C, Gong B, Bushel PR, Thierry-Mieg J, Thierry-Mieg D, Xu J, Fang H, Hong H, Shen J, Su Z, Meehan J, Li X, Yang L, Li H, Qabaj PP, Kreil DP, Megherbi D, Gaj S, Caiment F, van Delft J, Kleinjans J, Scherer A, Devanarayan V, Wang J, Yang Y, Qian H-R, Lancashire LJ, Bessarabova M, Nikolsky Y, Furlanello C, Chierici M, Albanese D, Jurman G, Riccadonna S, Filosi M, Visintainer R, Zhang KK, Li J, Hsieh J-H, Svoboda DL, Fuscoe JC, Deng Y, Shi L, Paules RS, Auerbach SS, Tong W. 2014. The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance. Nature Biotechnology 32(9):926-932 DOI 10.1038/nbt.3001.
-
(2014)
Nature Biotechnology
, vol.32
, Issue.9
, pp. 926-932
-
-
Wang, C.1
Gong, B.2
Bushel, P.R.3
Thierry-Mieg, J.4
Thierry-Mieg, D.5
Xu, J.6
Fang, H.7
Hong, H.8
Shen, J.9
Su, Z.10
Meehan, J.11
Li, X.12
Yang, L.13
Li, H.14
Qabaj, P.P.15
Kreil, D.P.16
Megherbi, D.17
Gaj, S.18
Caiment, F.19
van Delft, J.20
Kleinjans, J.21
Scherer, A.22
Devanarayan, V.23
Wang, J.24
Yang, Y.25
Qian, H.-R.26
Lancashire, L.J.27
Bessarabova, M.28
Nikolsky, Y.29
Furlanello, C.30
Chierici, M.31
Albanese, D.32
Jurman, G.33
Riccadonna, S.34
Filosi, M.35
Visintainer, R.36
Zhang, K.K.37
Li, J.38
Hsieh, J.-H.39
Svoboda, D.L.40
Fuscoe, J.C.41
Deng, Y.42
Shi, L.43
Paules, R.S.44
Auerbach, S.S.45
Tong, W.46
more..
-
37
-
-
57749195712
-
RNA-Seq: a revolutionary tool for transcriptomics
-
Wang Z, Gerstein M, Snyder M. 2010. RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics 10(1):57-63 DOI 10.1038/nrg2484.RNA-Seq.
-
(2010)
Nature Reviews Genetics
, vol.10
, Issue.1
, pp. 57-63
-
-
Wang, Z.1
Gerstein, M.2
Snyder, M.3
-
38
-
-
84937541141
-
RNA-seq accurately identifies cancer biomarker signatures to distinguish tissue of origin
-
Wei IH, Shi Y, Jiang H, Kumar-Sinha C, Chinnaiyan AM. 2014. RNA-seq accurately identifies cancer biomarker signatures to distinguish tissue of origin. Neoplasia 16(11):918-927 DOI 10.1016/j.neo.2014.09.007.
-
(2014)
Neoplasia
, vol.16
, Issue.11
, pp. 918-927
-
-
Wei, I.H.1
Shi, Y.2
Jiang, H.3
Kumar-Sinha, C.4
Chinnaiyan, A.M.5
|