메뉴 건너뛰기




Volumn 190, Issue , 2016, Pages 1-9

An empirical convolutional neural network approach for semantic relation classification

Author keywords

Convolution neural network; Data driven; Dropout; Relation classification

Indexed keywords

COMPUTATIONAL LINGUISTICS; CONVOLUTION; LINGUISTICS; NEURAL NETWORKS; QUALITY CONTROL; SEARCH ENGINES; SEMANTICS;

EID: 84955285770     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2015.12.091     Document Type: Article
Times cited : (92)

References (40)
  • 4
    • 84926319635 scopus 로고    scopus 로고
    • Big data for modern industry: challenges and trends
    • Yin S., Kaynak.O. Big data for modern industry: challenges and trends. Proc. IEEE 2015, 102(3):143-146.
    • (2015) Proc. IEEE , vol.102 , Issue.3 , pp. 143-146
    • Yin, S.1    Kaynak, O.2
  • 6
    • 84926526656 scopus 로고    scopus 로고
    • Intelligent particle filter and its application on fault detection of nonlinear system
    • Yin S., Zhu X. Intelligent particle filter and its application on fault detection of nonlinear system. IEEE Trans. Ind. Electron. 2015, 62(6):3852-3861.
    • (2015) IEEE Trans. Ind. Electron. , vol.62 , Issue.6 , pp. 3852-3861
    • Yin, S.1    Zhu, X.2
  • 7
    • 84944097156 scopus 로고    scopus 로고
    • Data-Driven Process Monitoring Based on Modified Orthogonal Projections to Latent Structures
    • Yin S., Wang G., Gao H. Data-Driven Process Monitoring Based on Modified Orthogonal Projections to Latent Structures. IEEE Trans. Control. Syst. Technol. 2015, http://dx.doi.org/10.1109/TCST.2015.2481318.
    • (2015) IEEE Trans. Control. Syst. Technol.
    • Yin, S.1    Wang, G.2    Gao, H.3
  • 8
    • 85027954372 scopus 로고    scopus 로고
    • Performance monitoring for vehicle suspension system via fuzzy positivistic C-means clustering based on accelerometer measurements
    • Yin S., Huang Z. Performance monitoring for vehicle suspension system via fuzzy positivistic C-means clustering based on accelerometer measurements. IEEE/ASME Trans. Mechatron. 2015, 20(5):2613-2620.
    • (2015) IEEE/ASME Trans. Mechatron. , vol.20 , Issue.5 , pp. 2613-2620
    • Yin, S.1    Huang, Z.2
  • 13
    • 84922882884 scopus 로고    scopus 로고
    • Improved PLS focused on key-performance-indicator-related fault diagnosis
    • Yin S., Zhu X., Kaynak O. Improved PLS focused on key-performance-indicator-related fault diagnosis. Ind. Electron. IEEE Trans. 2015, 62(3):1651-1658.
    • (2015) Ind. Electron. IEEE Trans. , vol.62 , Issue.3 , pp. 1651-1658
    • Yin, S.1    Zhu, X.2    Kaynak, O.3
  • 14
    • 84947975924 scopus 로고    scopus 로고
    • An improved incremental learning approach for KPI prognosis of dynamic fuel cell system
    • S. Yin, et al., An improved incremental learning approach for KPI prognosis of dynamic fuel cell system, IEEE Transactions on Cybernetics, 2015. http://dx.doi.org/10.1109/TCYB.2015.2498194.
    • (2015) IEEE Transactions on Cybernetics
    • Yin, S.1
  • 16
    • 80053558787 scopus 로고    scopus 로고
    • Natural language processing (almost) from scratch
    • Collobert R., et al. Natural language processing (almost) from scratch. J. Mach. Learn. Res. 2011, 12:2493-2537.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2493-2537
    • Collobert, R.1
  • 18
    • 84959862537 scopus 로고    scopus 로고
    • Relation classification via convolutional deep neural network
    • D. Zeng, et al. Relation classification via convolutional deep neural network. In: Proceedings of the COLING, 2014.
    • (2014) Proceedings of the COLING
    • Zeng, D.1
  • 21
    • 84979469378 scopus 로고    scopus 로고
    • Semantic Relation Classification via Convolutional Neural Networks with Simple Negative Sampling
    • arXiv Preprint arXiv:1506.07650
    • K. Xu, et al., Semantic Relation Classification via Convolutional Neural Networks with Simple Negative Sampling, arXiv Preprint arXiv:1506.07650, 2015.
    • (2015)
    • Xu, K.1
  • 23
    • 33847294345 scopus 로고    scopus 로고
    • RelEx-relation extraction using dependency parse trees
    • Fundel K., Küffner R., Zimmer R. RelEx-relation extraction using dependency parse trees. Bioinformatics 2007, 23(3):365-371.
    • (2007) Bioinformatics , vol.23 , Issue.3 , pp. 365-371
    • Fundel, K.1    Küffner, R.2    Zimmer, R.3
  • 24
    • 84906930320 scopus 로고    scopus 로고
    • Semantic parsing for single-relation question answering
    • W.-t. Yih, X. He, C. Meek, Semantic parsing for single-relation question answering, In: Proceedings of the ACL, 2014.
    • (2014) Proceedings of the ACL
    • Yih, W.-T.1    He, X.2    Meek, C.3
  • 26
    • 84938432210 scopus 로고    scopus 로고
    • Trigger word mining for relation extraction based on activation force
    • Xu W., Zhang C. Trigger word mining for relation extraction based on activation force. Int. J. Commun. Syst. 2014.
    • (2014) Int. J. Commun. Syst.
    • Xu, W.1    Zhang, C.2
  • 27
    • 0002263996 scopus 로고
    • Convolutional networks for images, speech, and time series
    • In: M.A. Arbib (Ed.)Cambridge, MA, MIT Press
    • Y. LeCun, Y. Bengio, Convolutional networks for images, speech, and time series, In: M.A. Arbib (Ed.), The Handbook of Brain Theory and Neural Networks, Cambridge, MA, MIT Press, 1995, pp. 255-258.
    • (1995) The Handbook of Brain Theory and Neural Networks , pp. 255-258
    • LeCun, Y.1    Bengio, Y.2
  • 29
    • 84963853589 scopus 로고    scopus 로고
    • Fuzzy-model-based reliable static output feedback H-infinity control of nonlinear hyperbolic PDE systems
    • J. Qiu, S. Ding, H. Gao, S. Yin, Fuzzy-model-based reliable static output feedback H-infinity control of nonlinear hyperbolic PDE systems, IEEE Transactions on Fuzzy Systems. 〈〉. http://dx.doi.org/10.1109/TFUZZ.2015.2457934.
    • IEEE Transactions on Fuzzy Systems
    • Qiu, J.1    Ding, S.2    Gao, H.3    Yin, S.4
  • 30
    • 84919906918 scopus 로고    scopus 로고
    • Data-based techniques focused on modern industry: an overview
    • Yin S., Li X., Gao H., Kaynak O. Data-based techniques focused on modern industry: an overview. IEEE Trans. Ind. Electron. 2015, 62(1):657-667.
    • (2015) IEEE Trans. Ind. Electron. , vol.62 , Issue.1 , pp. 657-667
    • Yin, S.1    Li, X.2    Gao, H.3    Kaynak, O.4
  • 31
    • 0345955715 scopus 로고
    • Distributional structure, Word
    • Z.S. Harris, Distributional structure, Word, 1954.
    • (1954)
    • Harris, Z.S.1
  • 32
    • 0142166851 scopus 로고    scopus 로고
    • A neural probabilistic language model
    • Bengio Y., et al. A neural probabilistic language model. J. Mach. Learn. Res. 2003, 3:1137-1155.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1137-1155
    • Bengio, Y.1
  • 35
    • 84940195450 scopus 로고    scopus 로고
    • Adaptive fuzzy control of strict-feedback nonlinear time-delay systems with unmodeled dynamics
    • S. Yin, P. Shi, H. Yang, Adaptive fuzzy control of strict-feedback nonlinear time-delay systems with unmodeled dynamics, IEEE Transactions on Cybernetics. 〈〉. http://dx.doi.org/10.1109/TCYB.2015.2457894.
    • IEEE Transactions on Cybernetics.
    • Yin, S.1    Shi, P.2    Yang, H.3
  • 39
    • 67650269871 scopus 로고    scopus 로고
    • How many hidden layers and nodes
    • Stathakis D. How many hidden layers and nodes. Int. J. Remote Sens. 2009, 30(8):2133-2147.
    • (2009) Int. J. Remote Sens. , vol.30 , Issue.8 , pp. 2133-2147
    • Stathakis, D.1
  • 40
    • 84880162531 scopus 로고    scopus 로고
    • Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture
    • Karsoliya S. Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture. Int. J. Eng. Trends Technol. 2012, 3(6):713-717.
    • (2012) Int. J. Eng. Trends Technol. , vol.3 , Issue.6 , pp. 713-717
    • Karsoliya, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.