메뉴 건너뛰기




Volumn , Issue , 2014, Pages 633-644

A neural network for factoid question answering over paragraphs

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); NEURAL NETWORKS; TEXT PROCESSING;

EID: 84961292009     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.3115/v1/d14-1070     Document Type: Conference Paper
Times cited : (301)

References (35)
  • 2
    • 80052121384 scopus 로고    scopus 로고
    • Finding the right facts in the crowd: Factoid question answering over social media
    • Jiang Bian, Yandong Liu, Eugene Agichtein, and Hongyuan Zha. 2008. Finding the right facts in the crowd: factoid question answering over social media. In WWW.
    • (2008) WWW
    • Bian, J.1    Liu, Y.2    Agichtein, E.3    Zha, H.4
  • 3
    • 78651314924 scopus 로고    scopus 로고
    • Rank learning for factoid question answering with linguistic and semantic constraints
    • Matthew W. Bilotti, Jonathan Elsas, Jaime Carbonell, and Eric Nyberg. 2010. Rank learning for factoid question answering with linguistic and semantic constraints. In CIKM.
    • (2010) CIKM
    • Bilotti, M.W.1    Elsas, J.2    Carbonell, J.3    Nyberg, E.4
  • 4
    • 84883313759 scopus 로고    scopus 로고
    • Besting the quiz master: Crowdsourcing incremental classification games
    • Jordan Boyd-Graber, Brianna Satinoff, He He, and Hal Daume III. 2012. Besting the quiz master: Crowdsourcing incremental classification games. In EMNLP.
    • (2012) EMNLP
    • Boyd-Graber, J.1    Satinoff, B.2    He, H.3    Hal, D.4
  • 5
    • 85037338954 scopus 로고    scopus 로고
    • Generating typed dependency parses from phrase structure parses
    • Marie-Catherine De Marneffe, Bill MacCartney, Christopher D Manning, et al. 2006. Generating typed dependency parses from phrase structure parses. In LREC.
    • (2006) LREC
    • De Marneffe, M.-C.1    MaCcartney, B.2    Manning, C.D.3
  • 6
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • 999999
    • John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods for online learning and stochastic optimization. JMLR, 999999:2121- 2159.
    • (2011) JMLR , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 7
    • 84867298859 scopus 로고    scopus 로고
    • Vector space models of word meaning and phrase meaning: A survey
    • Katrin Erk. 2012. Vector space models of word meaning and phrase meaning: A survey. Language and Linguistics Compass.
    • (2012) Language and Linguistics Compass
    • Erk, K.1
  • 8
    • 0029727454 scopus 로고    scopus 로고
    • Learning task-dependent distributed representations by backpropagation through structure
    • Christoph Goller and Andreas Kuchler. 1996. Learning task-dependent distributed representations by backpropagation through structure. In Neural Networks, 1996., IEEE International Conference on, volume 1.
    • (1996) Neural Networks, 1996., IEEE International Conference on , vol.1
    • Goller, C.1    Kuchler, A.2
  • 9
    • 84943741021 scopus 로고    scopus 로고
    • Multi-step regression learning for compositional distributional semantics
    • Edward Grefenstette, Georgiana Dinu, Yao-Zhong Zhang, Mehrnoosh Sadrzadeh, and Marco Baroni. 2013. Multi-step regression learning for compositional distributional semantics. CoRR.
    • (2013) CoRR
    • Grefenstette, E.1    Dinu, G.2    Zhang, Y.-Z.3    Sadrzadeh, M.4    Baroni, M.5
  • 10
    • 84906929292 scopus 로고    scopus 로고
    • The role of syntax in vector space models of compositional semantics
    • Karl Moritz Hermann and Phil Blunsom. 2013. The Role of Syntax in Vector Space Models of Compositional Semantics. In ACL.
    • (2013) ACL
    • Hermann, K.M.1    Blunsom, P.2
  • 12
    • 84906921940 scopus 로고    scopus 로고
    • Semantic frame identification with distributed word representations
    • Karl Moritz Hermann, Dipanjan Das, Jason Weston, and Kuzman Ganchev. 2014. Semantic frame identification with distributed word representations. In ACL.
    • (2014) ACL
    • Hermann, K.M.1    Das, D.2    Weston, J.3    Ganchev, K.4
  • 13
    • 84870293219 scopus 로고    scopus 로고
    • Yago2: A spatially and temporally enhanced knowledge base from Wikipedia
    • Johannes Hoffart, Fabian M Suchanek, Klaus Berberich, and Gerhard Weikum. 2013. Yago2: A spatially and temporally enhanced knowledge base from wikipedia. Artificial Intelligence, 194:28-61.
    • (2013) Artificial Intelligence , vol.194 , pp. 28-61
    • Hoffart, J.1    Suchanek, F.M.2    Berberich, K.3    Weikum, G.4
  • 19
    • 84859927665 scopus 로고    scopus 로고
    • Vector-based models of semantic composition
    • Jeff Mitchell and Mirella Lapata. 2008. Vector-based models of semantic composition. In ACL.
    • (2008) ACL
    • Mitchell, J.1    Lapata, M.2
  • 21
    • 84906921910 scopus 로고    scopus 로고
    • Zero-shot entity extraction from web pages
    • P. Pasupat and P. Liang. 2014. Zero-shot entity extraction from web pages. In ACL.
    • (2014) ACL
    • Pasupat, P.1    Liang, P.2
  • 22
    • 84901506592 scopus 로고    scopus 로고
    • Grammatical structures for word-level sentiment detection
    • Asad B Sayeed, Jordan Boyd-Graber, Bryan Rusk, and Amy Weinberg. 2012. Grammatical structures for word-level sentiment detection. In NAACL.
    • (2012) NAACL
    • Sayeed, A.B.1    Boyd-Graber, J.2    Rusk, B.3    Weinberg, A.4
  • 23
    • 79960232116 scopus 로고    scopus 로고
    • Using semantic role to improve question answering
    • Dan Shen. 2007. Using semantic role to improve question answering. In EMNLP.
    • (2007) EMNLP
    • Shen, D.1
  • 24
    • 80053261327 scopus 로고    scopus 로고
    • Semi-supervised recursive autoencoders for predicting sentiment distributions
    • Richard Socher, Jeffrey Pennington, Eric H. Huang, Andrew Y. Ng, and Christopher D. Manning. 2011. Semi-Supervised Recursive Autoencoders for Predicting Sentiment Distributions. In EMNLP.
    • (2011) EMNLP
    • Socher, R.1    Pennington, J.2    Huang, E.H.3    Ng, A.Y.4    Manning, C.D.5
  • 25
    • 84893795422 scopus 로고    scopus 로고
    • Parsing with compositional vector grammars
    • Richard Socher, John Bauer, Christopher D. Manning, and Andrew Y. Ng. 2013a. Parsing With Compositional Vector Grammars. In ACL.
    • (2013) ACL
    • Socher, R.1    Bauer, J.2    Manning, C.D.3    Ng, A.Y.4
  • 26
    • 84898956227 scopus 로고    scopus 로고
    • Reasoning with neural tensor networks for knowledge base completion
    • Richard Socher, Danqi Chen, Christopher D. Manning, and Andrew Y. Ng. 2013b. Reasoning With Neural Tensor Networks For Knowledge Base Completion. In NIPS.
    • (2013) NIPS
    • Socher, R.1    Chen, D.2    Manning, C.D.3    Ng, A.Y.4
  • 27
    • 84926358845 scopus 로고    scopus 로고
    • Recursive deep models for semantic compositionality over a sentiment treebank
    • Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and Christopher Potts. 2013c. Recursive deep models for semantic compositionality over a sentiment treebank. In EMNLP.
    • (2013) EMNLP
    • Socher, R.1    Perelygin, A.2    Wu, J.Y.3    Chuang, J.4    Manning, C.D.5    Ng, A.Y.6    Potts, C.7
  • 28
    • 84906925854 scopus 로고    scopus 로고
    • Grounded compositional semantics for finding and describing images with sentences
    • Richard Socher, Quoc V Le, Christopher D Manning, and Andrew Y Ng. 2014. Grounded compositional semantics for finding and describing images with sentences. TACL.
    • (2014) TACL
    • Socher, R.1    Le, Q.V.2    Manning, C.D.3    Ng, A.Y.4
  • 29
    • 71149107027 scopus 로고    scopus 로고
    • Ranking with ordered weighted pairwise classification
    • Nicolas Usunier, David Buffoni, and Patrick Gallinari. 2009. Ranking with ordered weighted pairwise classification. In ICML.
    • (2009) ICML
    • Usunier, N.1    Buffoni, D.2    Gallinari, P.3
  • 30
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing data using t-sne
    • Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-sne. JMLR.
    • (2008) JMLR
    • Van Der Maaten, L.1    Hinton, G.2
  • 31
    • 80053356836 scopus 로고    scopus 로고
    • What is the jeopardy model? A quasisynchronous grammar for QA
    • Mengqiu Wang, Noah A. Smith, and Teruko Mitamura. 2007. What is the Jeopardy model? a quasisynchronous grammar for QA. In EMNLP.
    • (2007) EMNLP
    • Wang, M.1    Smith, N.A.2    Mitamura, T.3
  • 32
    • 84921441009 scopus 로고    scopus 로고
    • A survey of answer extraction techniques in factoid question answering
    • Mengqiu Wang. 2006. A survey of answer extraction techniques in factoid question answering. Computational Linguistics, 1(1).
    • (2006) Computational Linguistics , vol.1 , Issue.1
    • Wang, M.1
  • 33
    • 84867117593 scopus 로고    scopus 로고
    • Wsabie: Scaling up to large vocabulary image annotation
    • Jason Weston, Samy Bengio, and Nicolas Usunier. 2011. Wsabie: Scaling up to large vocabulary image annotation. In IJCAI.
    • (2011) IJCAI
    • Weston, J.1    Bengio, S.2    Usunier, N.3
  • 34
    • 80053240499 scopus 로고    scopus 로고
    • Compositional matrix-space models for sentiment analysis
    • Ainur Yessenalina and Claire Cardie. 2011. Compositional matrix-space models for sentiment analysis. In EMNLP.
    • (2011) EMNLP
    • Yessenalina, A.1    Cardie, C.2
  • 35
    • 80053408124 scopus 로고    scopus 로고
    • Estimating linear models for compositional distributional semantics
    • Fabio Massimo Zanzotto, Ioannis Korkontzelos, Francesca Fallucchi, and Suresh Manandhar. 2010. Estimating linear models for compositional distributional semantics. In COLT.
    • (2010) COLT
    • Zanzotto, F.M.1    Korkontzelos, I.2    Fallucchi, F.3    Manandhar, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.