메뉴 건너뛰기




Volumn 27, Issue , 2013, Pages 613-621

Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine

Author keywords

Grouping forecasts; Optimized relevance vector machine; Uncertainty analysis; Wind power

Indexed keywords

ELECTRIC UTILITIES; ITERATIVE METHODS; LEARNING SYSTEMS; PARTICLE SWARM OPTIMIZATION (PSO); VECTORS; WEATHER FORECASTING; WIND POWER; WIND TURBINES;

EID: 84881341396     PISSN: 13640321     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.rser.2013.07.026     Document Type: Review
Times cited : (87)

References (44)
  • 2
    • 76849086905 scopus 로고    scopus 로고
    • Probabilistic load flow with correlated wind power injections
    • J Usaola Probabilistic load flow with correlated wind power injections Electric Power Systems Research 80 5 2010 528 536
    • (2010) Electric Power Systems Research , vol.80 , Issue.5 , pp. 528-536
    • Usaola, J.1
  • 4
    • 77955279506 scopus 로고    scopus 로고
    • Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs
    • YY Hong, HL Chang, and CS Chiu. Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs Energy 35 2010 3870 3876
    • (2010) Energy , vol.35 , pp. 3870-3876
    • Hong, Y.Y.1    Chang, H.L.2    Chiu, C.S.3
  • 5
    • 38349108557 scopus 로고    scopus 로고
    • Analysis of wind power generation and prediction using ANN: A case study
    • MC Mabel, and E Fernandez Analysis of wind power generation and prediction using ANN: a case study Renewable Energy 33 5 2008 986 992
    • (2008) Renewable Energy , vol.33 , Issue.5 , pp. 986-992
    • Mabel, M.C.1    Fernandez, E.2
  • 6
    • 51849142610 scopus 로고    scopus 로고
    • Short term wind speed forecasting in la Venta, Oaxaca, México, using artificial neural networks
    • E Cadenas, and W Rivera Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks Renewable Energy 34 1 2009 274 278
    • (2009) Renewable Energy , vol.34 , Issue.1 , pp. 274-278
    • Cadenas, E.1    Rivera, W.2
  • 8
    • 78649450621 scopus 로고    scopus 로고
    • Short-term wind power forecasting in Portugal by neural networks and wavelet transform
    • JPS Catalão, HMI Pousinho, and VMF Mendes. Short-term wind power forecasting in Portugal by neural networks and wavelet transform Renewable Energy 36 2011 1245 1251
    • (2011) Renewable Energy , vol.36 , pp. 1245-1251
    • Catalão, J.P.S.1    Pousinho, H.M.I.2    Mendes, V.M.F.3
  • 9
    • 77958124770 scopus 로고    scopus 로고
    • Piecewise support vector machine model for short-term wind-power prediction
    • Yongqian Liu, Jie Shi, Yongping Yang, and Shuang Han Piecewise support vector machine model for short-term wind-power prediction International Journal of Green Energy 6 2009 479 489
    • (2009) International Journal of Green Energy , vol.6 , pp. 479-489
    • Liu, Y.1    Shi, J.2    Yang, Y.3    Han, S.4
  • 10
    • 0442296729 scopus 로고    scopus 로고
    • Support vector machines for wind speed prediction
    • DOI 10.1016/j.renene.2003.11.009
    • MA Mohandes, TO Halawani, S Rehman, and Ahmed A. Hussain Support vector machines for wind speed prediction Renewable Energy 29 2004 939 947 (Pubitemid 38242182)
    • (2004) Renewable Energy , vol.29 , Issue.6 , pp. 939-947
    • Mohandes, M.A.1    Halawani, T.O.2    Rehman, S.3    Hussain, A.A.4
  • 11
    • 79952454042 scopus 로고    scopus 로고
    • Multiple architecture system for wind speed prediction
    • Hassen Bouzgou, and Nabil Benoudjit Multiple architecture system for wind speed prediction Applied Energy 88 2011 2463 2471
    • (2011) Applied Energy , vol.88 , pp. 2463-2471
    • Bouzgou, H.1    Benoudjit, N.2
  • 12
    • 80052530027 scopus 로고    scopus 로고
    • Short-term wind power forecasting using ridgelet neural network
    • Nima Amjady, Farshid Keynia, and Hamidreza Zareipour Short-term wind power forecasting using ridgelet neural network Electric Power Systems Research 81 12 Dec. 2011 2099 2107
    • (2011) Electric Power Systems Research , vol.81 , Issue.12 , pp. 2099-2107
    • Amjady, N.1    Keynia, F.2    Zareipour, H.3
  • 14
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • ME Tipping. Sparse Bayesian learning and the relevance vector machine Journal of Machine Learning Research 1 2001 211 244
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 15
    • 21244456503 scopus 로고    scopus 로고
    • Comparison of the support Vector Machine and Relevant Vector Machine in regression and classification problems
    • TuM6.01 - P1191, 2004 8th International Conference on Control, Automation, Robotics and Vision (ICARCV)
    • WM Yu, TH Du, K Lim. Comparison of the support vector machine and relevant vector machine in regression and classification problems [C]. In: Eighth international conference on control, automation, robotics and vision, vol. 2. Kunming: China; Dec. 6-9, 2004.p. 1309-1314. (Pubitemid 40893748)
    • (2004) 2004 8th International Conference on Control, Automation, Robotics and Vision (ICARCV) , vol.2 , pp. 1309-1314
    • Yu, W.M.1    Du, T.2    Lim, K.B.3
  • 18
    • 57649149024 scopus 로고    scopus 로고
    • Regression based on sparse Bayesian learning and the applications in electric systems [c]
    • Jinan: China; Oct. 18-20
    • Duan Q, Zhao JG, Niu L, et al. Regression based on sparse Bayesian learning and the applications in electric systems [c]. In: Fourth international conference on natural computing. Jinan: China; Oct. 18-20, 2008. p. 106-111.
    • (2008) Fourth International Conference on Natural Computing , pp. 106-111
    • Duan, Q.1    Zhao, J.G.2    Niu, L.3
  • 19
    • 77956366904 scopus 로고    scopus 로고
    • Relevance vector machine based on particle swarm optimization of compounding kernels in electricity load forecasting
    • Q Duan, JG Zhao, and Y Ma Relevance vector machine based on particle swarm optimization of compounding kernels in electricity load forecasting Electric Machines and Control 14 6 2010 34 38
    • (2010) Electric Machines and Control , vol.14 , Issue.6 , pp. 34-38
    • Duan, Q.1    Zhao, J.G.2    Ma, Y.3
  • 20
    • 77949658813 scopus 로고    scopus 로고
    • Application of relevance vector machine and logistic regression for machine degradation assessment
    • Wahyu Caesarendra, Achmad Widodo, and Bo-Suk Yang Application of relevance vector machine and logistic regression for machine degradation assessment Mechanical Systems and Signal Processing 24 2010 1161 1171
    • (2010) Mechanical Systems and Signal Processing , vol.24 , pp. 1161-1171
    • Caesarendra, W.1    Widodo, A.2    Yang, B.-S.3
  • 22
    • 75049083283 scopus 로고    scopus 로고
    • Wind forecasts for wind power generation using the eta model
    • Lazar Lazic', Goran Pejanovic', and Momčilo Živković Wind forecasts for wind power generation using the eta model Renewable Energy 35 2010 1236 1243
    • (2010) Renewable Energy , vol.35 , pp. 1236-1243
    • Lazic, L.1    Pejanovic, G.2    Živković, M.3
  • 23
    • 79959375425 scopus 로고    scopus 로고
    • Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods
    • Maria Grazia, De Giorgi, Antonio Ficarella, and Marco Tarantino Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods Energy 36 2011 3958 3978
    • (2011) Energy , vol.36 , pp. 3958-3978
    • Grazia, M.1    Giorgi, D.2    Ficarella, A.3    Tarantino, M.4
  • 29
    • 79960180649 scopus 로고    scopus 로고
    • Spatial and temporal analysis of electric wind generation intermittency and dynamics
    • B Tarroja, F Mueller, and JD Eichman Spatial and temporal analysis of electric wind generation intermittency and dynamics Renewable Energy 36 12 2011 3424 3432
    • (2011) Renewable Energy , vol.36 , Issue.12 , pp. 3424-3432
    • Tarroja, B.1    Mueller, F.2    Eichman, J.D.3
  • 31
    • 77952165205 scopus 로고    scopus 로고
    • An ultra-short-term wind power forecasting method in regional grids
    • (in Chinese)
    • Li Zhi, Han Xueshan, and Han Li An ultra-short-term wind power forecasting method in regional grids Automation of Electric Power System 34 7 2010 90 94 (in Chinese)
    • (2010) Automation of Electric Power System , vol.34 , Issue.7 , pp. 90-94
    • Zhi, L.1    Xueshan, H.2    Li, H.3
  • 32
    • 77956538409 scopus 로고    scopus 로고
    • A study of the reduction of the regional aggregated wind power forecast error by spatial smoothing effects in the Maritime Canada
    • Halifax, NS: Canada
    • Han Yu, Chang Liuchen. A study of the reduction of the regional aggregated wind power forecast error by spatial smoothing effects in the Maritime Canada. In: IEEE electrical power & energy conference. Halifax, NS: Canada; 2010. p. 942-947.
    • (2010) IEEE Electrical Power & Energy Conference , pp. 942-947
    • Yu, H.1    Liuchen, C.2
  • 33
    • 84881345819 scopus 로고    scopus 로고
    • Turkey by using the WRF model coupled to WindSim. In: Renewable energy research and applications (ICRERA)
    • on 11-14 Nov; 2012
    • Efe, B, Unal, E, Mentes, S, Ozdemir, T. Turkey by using the WRF model coupled to WindSim. In: Renewable energy research and applications (ICRERA), 2012 international conference on 11-14 Nov; 2012.
    • 2012 International Conference
    • Efe, B.1    Unal, E.2    Mentes, S.3    Ozdemir, T.4
  • 34
    • 77958187280 scopus 로고    scopus 로고
    • Interpolation of missing wind data based on ANFIS
    • Yang Zhiling, Liu Yongqian, Li Chengrong. Interpolation of missing wind data based on ANFIS, Renewable Energy, 36, 3, 993-998.
    • Renewable Energy , vol.36 , Issue.3 , pp. 993-998
    • Zhiling, Y.1    Yongqian, L.2    Chengrong, L.3
  • 36
    • 0025489075 scopus 로고
    • The self-organizing map
    • T Kohonen. The self-organizing map Proceedings of the IEEE 78 1990 1464 1480
    • (1990) Proceedings of the IEEE , vol.78 , pp. 1464-1480
    • Kohonen, T.1
  • 38
    • 84879073309 scopus 로고    scopus 로고
    • The short-term wind power forecast based on phase-space reconstruction and neural networks
    • Zhang Jin-Hua, Liu Yong-Qian, Tian De. The short-term wind power forecast based on phase-space reconstruction and neural networks. Journal of Digital Information Management 2013;11(1):40-45.
    • (2013) Journal of Digital Information Management , vol.11 , Issue.1 , pp. 40-45
    • Jin-Hua, Z.1    Yong-Qian, L.2    De, T.3
  • 40
    • 84861505920 scopus 로고    scopus 로고
    • Wind power forecasting using fuzzy neural networks enhanced with on-line prediction risk assessment
    • P Pinson, and G N Kariniotakis Wind power forecasting using fuzzy neural networks enhanced with on-line prediction risk assessment IEEE Bologna PowerTech - Conference Proceedings 2 2003
    • (2003) IEEE Bologna PowerTech - Conference Proceedings , vol.2
    • Pinson, P.1    Kariniotakis, G.N.2
  • 41
    • 24944575302 scopus 로고    scopus 로고
    • Assessment of the cost associated with wind generation prediction errors in a liberalized electricity market
    • DOI 10.1109/TPWRS.2005.852148
    • A Fabbri, T Gomez San Roman, J Rivier Abbad, and V H M Quezada Assessment of the cost associated with wind generation prediction errors in a liberalized electricity market IEEE Transactions on Power Systems 20 3 2005 1440 1446 (Pubitemid 41300957)
    • (2005) IEEE Transactions on Power Systems , vol.20 , Issue.3 , pp. 1440-1446
    • Fabbri, A.1    San Roman, T.G.2    Abbad, J.R.3    Mendez Quezada, V.H.M.4
  • 42
    • 36749022145 scopus 로고    scopus 로고
    • An integration of ANN wind power estimation into unit commitment considering the forecasting uncertainty
    • DOI 10.1109/TIA.2007.908203
    • K Methaprayoon, C Yingvivatanapong, W J Lee, and J R Liao An integration of ANN wind power estimation into unit commitment considering the forecasting uncertainty IEEE Transactions on Industry Applications 43 6 2007 1441 1448 (November-December) (Pubitemid 350201129)
    • (2007) IEEE Transactions on Industry Applications , vol.43 , Issue.6 , pp. 1441-1448
    • Methaprayoon, K.1    Yingvivatanapong, C.2    Lee, W.-J.3    Liao, J.R.4
  • 43
  • 44
    • 0005581003 scopus 로고    scopus 로고
    • A mathematical look at a physical power prediction model
    • L Landberg. A mathematical look at a physical power prediction model Wind Energy 1 1 1998 23 28
    • (1998) Wind Energy , vol.1 , Issue.1 , pp. 23-28
    • Landberg, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.