메뉴 건너뛰기




Volumn 70, Issue 9, 2015, Pages 2551-2555

Stepwise emergence of azole, echinocandin and amphotericin B multidrug resistance in vivo in Candida albicans orchestrated by multiple genetic alterations

Author keywords

Antifungal resistance; Molecular typing; Mycology; Resistance mechanisms

Indexed keywords

AMINO ACID; AMPHOTERICIN B; ANTIFUNGAL AGENT; CASPOFUNGIN; ECHINOCANDIN; ERGOSTEROL; FLUCONAZOLE; POLYENE; POSACONAZOLE; PYRROLE DERIVATIVE; VORICONAZOLE; FUNGAL DNA;

EID: 84954271426     PISSN: 03057453     EISSN: 14602091     Source Type: Journal    
DOI: 10.1093/jac/dkv140     Document Type: Article
Times cited : (64)

References (30)
  • 1
    • 84922271120 scopus 로고    scopus 로고
    • Antifungal drug resistance mechanisms in pathogenic fungi: from bench to bedside
    • Cuenca-Estrella M. Antifungal drug resistance mechanisms in pathogenic fungi: from bench to bedside. Clin Microbiol Infect 2014; 20: 54-9.
    • (2014) Clin Microbiol Infect , vol.20 , pp. 54-59
    • Cuenca-Estrella, M.1
  • 2
    • 0036488166 scopus 로고    scopus 로고
    • Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences
    • Sanglard D, Odds FC. Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect Dis 2002; 2: 73-85.
    • (2002) Lancet Infect Dis , vol.2 , pp. 73-85
    • Sanglard, D.1    Odds, F.C.2
  • 3
    • 11144308844 scopus 로고    scopus 로고
    • Role of Candida albicans transcription factor Upc2p in drug resistance and sterol metabolism
    • Silver PM, Oliver BG, White TC. Role of Candida albicans transcription factor Upc2p in drug resistance and sterol metabolism. Eukaryot Cell 2004; 3: 1391-7.
    • (2004) Eukaryot Cell , vol.3 , pp. 1391-1397
    • Silver, P.M.1    Oliver, B.G.2    White, T.C.3
  • 4
    • 33746506280 scopus 로고    scopus 로고
    • Aneuploidy and isochromosome formation in drug-resistant Candida albicans
    • Selmecki A, Forche A, Berman J. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 2006; 313: 367-70.
    • (2006) Science , vol.313 , pp. 367-370
    • Selmecki, A.1    Forche, A.2    Berman, J.3
  • 5
    • 0029853191 scopus 로고    scopus 로고
    • Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance
    • Albertson GD, Niimi M, Cannon RD et al. Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance. Antimicrob Agents Chemother 1996; 40: 2835-41.
    • (1996) Antimicrob Agents Chemother , vol.40 , pp. 2835-2841
    • Albertson, G.D.1    Niimi, M.2    Cannon, R.D.3
  • 6
    • 84927788542 scopus 로고    scopus 로고
    • Echinocandin resistance: an emerging clinical problem?
    • Arendrup MC, Perlin DS. Echinocandin resistance: an emerging clinical problem? Curr Opin Infect Dis 2014; 27: 484-92.
    • (2014) Curr Opin Infect Dis , vol.27 , pp. 484-492
    • Arendrup, M.C.1    Perlin, D.S.2
  • 7
    • 84862606187 scopus 로고    scopus 로고
    • EUCAST technical note on the EUCAST definitive document EDef 7.2: method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts EDef 7.2 (EUCAST-AFST)
    • Arendrup MC, Cuenca-Estrella M, Lass-Flörl C et al. EUCAST technical note on the EUCAST definitive document EDef 7.2: method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts EDef 7.2 (EUCAST-AFST). Clin Microbiol Infect 2012; 18: E246-7.
    • (2012) Clin Microbiol Infect , vol.18 , pp. E246-E247
    • Arendrup, M.C.1    Cuenca-Estrella, M.2    Lass-Flörl, C.3
  • 8
    • 84900467753 scopus 로고    scopus 로고
    • EUCAST technical note on Candida and micafungin, anidulafungin and fluconazole
    • Arendrup MC, Cuenca-Estrella M, Lass-Flörl C et al. EUCAST technical note on Candida and micafungin, anidulafungin and fluconazole. Mycoses 2014; 57: 377-9.
    • (2014) Mycoses , vol.57 , pp. 377-379
    • Arendrup, M.C.1    Cuenca-Estrella, M.2    Lass-Flörl, C.3
  • 9
    • 84900829814 scopus 로고    scopus 로고
    • Breakpoints for antifungal agents: an update from EUCAST focussing on echinocandins against Candida spp. and triazoles against Aspergillus spp
    • Arendrup MC, Cuenca-Estrella M, Lass-Flörl C et al. Breakpoints for antifungal agents: an update from EUCAST focussing on echinocandins against Candida spp. and triazoles against Aspergillus spp. Drug Resist Updat 2013; 16: 81-95.
    • (2013) Drug Resist Updat , vol.16 , pp. 81-95
    • Arendrup, M.C.1    Cuenca-Estrella, M.2    Lass-Flörl, C.3
  • 12
    • 0036204680 scopus 로고    scopus 로고
    • Usefulness of multilocus sequence typing for characterization of clinical isolates of Candida albicans
    • Bougnoux M-E, Morand S, Enfert C et al. Usefulness of multilocus sequence typing for characterization of clinical isolates of Candida albicans. J Clin Microbiol 2002; 40: 1290-7.
    • (2002) J Clin Microbiol , vol.40 , pp. 1290-1297
    • Bougnoux, M.-E.1    Morand, S.2    Enfert, C.3
  • 13
    • 4444297608 scopus 로고    scopus 로고
    • Ergosterol gene expression in wild-type and ergosterol-deficient mutants of Candida albicans
    • Pierson CA, Eckstein J, Barbuch R et al. Ergosterol gene expression in wild-type and ergosterol-deficient mutants of Candida albicans. Med Mycol 2004; 42: 385-9.
    • (2004) Med Mycol , vol.42 , pp. 385-389
    • Pierson, C.A.1    Eckstein, J.2    Barbuch, R.3
  • 14
    • 1242352902 scopus 로고    scopus 로고
    • Drug resistance genes and trailing growth in Candida albicans isolates
    • Lee M-K, Williams LE, Warnock DW et al. Drug resistance genes and trailing growth in Candida albicans isolates. J Antimicrob Chemother 2004; 53: 217-24.
    • (2004) J Antimicrob Chemother , vol.53 , pp. 217-224
    • Lee, M.-K.1    Williams, L.E.2    Warnock, D.W.3
  • 15
    • 84891604637 scopus 로고    scopus 로고
    • Distinct roles of Candida albicans drug resistance transcription factors TAC1, MRR1, and UPC2 in virulence
    • Lohberger A, Coste AT, Sanglard D. Distinct roles of Candida albicans drug resistance transcription factors TAC1, MRR1, and UPC2 in virulence. Eukaryot Cell 2014; 13: 127-42.
    • (2014) Eukaryot Cell , vol.13 , pp. 127-142
    • Lohberger, A.1    Coste, A.T.2    Sanglard, D.3
  • 16
    • 0043270593 scopus 로고    scopus 로고
    • Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents
    • Sanglard D, Ischer F, Parkinson T et al. Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents. Antimicrob Agents Chemother 2003; 47: 2404-12.
    • (2003) Antimicrob Agents Chemother , vol.47 , pp. 2404-2412
    • Sanglard, D.1    Ischer, F.2    Parkinson, T.3
  • 17
    • 0034681042 scopus 로고    scopus 로고
    • Determination of ergosterol on mouldy building materials using isotope dilution and gas chromatography-tandem mass spectrometry
    • Nielsen KF, Madsen JO. Determination of ergosterol on mouldy building materials using isotope dilution and gas chromatography-tandem mass spectrometry. J Chromatogr A 2000; 898: 227-34.
    • (2000) J Chromatogr A , vol.898 , pp. 227-234
    • Nielsen, K.F.1    Madsen, J.O.2
  • 18
    • 84875543551 scopus 로고    scopus 로고
    • Antifungal efficacy during Candida krusei infection in non-conventional models correlates with the yeast in vitro susceptibility profile
    • Scorzoni L, de Lucas MP, Mesa-Arango AC et al. Antifungal efficacy during Candida krusei infection in non-conventional models correlates with the yeast in vitro susceptibility profile. PLoS One 2013; 8: e60047.
    • (2013) PLoS One , vol.8
    • Scorzoni, L.1    de Lucas, M.P.2    Mesa-Arango, A.C.3
  • 19
    • 84920178124 scopus 로고    scopus 로고
    • Contribution of clinically derived mutations in ERG11 to azole resistance in Candida albicans
    • Flowers SA, Colón B, Whaley SG et al. Contribution of clinically derived mutations in ERG11 to azole resistance in Candida albicans. Antimicrob Agents Chemother 2015; 59: 450-60.
    • (2015) Antimicrob Agents Chemother , vol.59 , pp. 450-460
    • Flowers, S.A.1    Colón, B.2    Whaley, S.G.3
  • 20
    • 2542494102 scopus 로고    scopus 로고
    • Application of real-time quantitative PCR to molecular analysis of Candida albicans strains exhibiting reduced susceptibility to azoles
    • Chau AS, Mendrick CA, Sabatelli FJ et al. Application of real-time quantitative PCR to molecular analysis of Candida albicans strains exhibiting reduced susceptibility to azoles. Antimicrob Agents Chemother 2004; 48: 2124-31.
    • (2004) Antimicrob Agents Chemother , vol.48 , pp. 2124-2131
    • Chau, A.S.1    Mendrick, C.A.2    Sabatelli, F.J.3
  • 21
    • 1642543197 scopus 로고    scopus 로고
    • The Candida albicans lanosterol 14-α-demethylase (ERG11) gene promoter is maximally induced after prolonged growth with antifungal drugs
    • Song JL, Harry JB, Eastman RT et al. The Candida albicans lanosterol 14-α-demethylase (ERG11) gene promoter is maximally induced after prolonged growth with antifungal drugs. Antimicrob Agents Chemother 2004; 48: 1136-44.
    • (2004) Antimicrob Agents Chemother , vol.48 , pp. 1136-1144
    • Song, J.L.1    Harry, J.B.2    Eastman, R.T.3
  • 22
    • 37549020764 scopus 로고    scopus 로고
    • Cis-acting elements within the Candida albicans ERG11 promoter mediate the azole response through transcription factor Upc2p
    • Oliver BG, Song JL, Choiniere JH et al. Cis-acting elements within the Candida albicans ERG11 promoter mediate the azole response through transcription factor Upc2p. Eukaryot Cell 2007; 6: 2231-9.
    • (2007) Eukaryot Cell , vol.6 , pp. 2231-2239
    • Oliver, B.G.1    Song, J.L.2    Choiniere, J.H.3
  • 23
    • 84885423640 scopus 로고    scopus 로고
    • Deciphering azole resistance mechanisms with a focus on transcription factor-encoding genes TAC1, MRR1 and UPC2 in a set of fluconazole-resistant clinical isolates of Candida albicans
    • Morio F, Pagniez F, Besse M et al. Deciphering azole resistance mechanisms with a focus on transcription factor-encoding genes TAC1, MRR1 and UPC2 in a set of fluconazole-resistant clinical isolates of Candida albicans. Int J Antimicrob Agents 2013; 42: 410-5.
    • (2013) Int J Antimicrob Agents , vol.42 , pp. 410-415
    • Morio, F.1    Pagniez, F.2    Besse, M.3
  • 24
    • 11144270183 scopus 로고    scopus 로고
    • TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2
    • Coste AT, Karababa M, Ischer F et al. TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. Eukaryot Cell 2004; 3: 1639-52.
    • (2004) Eukaryot Cell , vol.3 , pp. 1639-1652
    • Coste, A.T.1    Karababa, M.2    Ischer, F.3
  • 25
    • 34447105864 scopus 로고    scopus 로고
    • Resistance to echinocandin-class antifungal drugs
    • Perlin DS. Resistance to echinocandin-class antifungal drugs. Drug Resist Updat 2007; 10: 121-30.
    • (2007) Drug Resist Updat , vol.10 , pp. 121-130
    • Perlin, D.S.1
  • 26
    • 84869234407 scopus 로고    scopus 로고
    • Two clinical isolates of Candida glabrata exhibiting reduced sensitivity to amphotericin B both harbor mutations in ERG2
    • Hull CM, Bader O, Parker JE et al. Two clinical isolates of Candida glabrata exhibiting reduced sensitivity to amphotericin B both harbor mutations in ERG2. Antimicrob Agents Chemother 2012; 56: 6417-21.
    • (2012) Antimicrob Agents Chemother , vol.56 , pp. 6417-6421
    • Hull, C.M.1    Bader, O.2    Parker, J.E.3
  • 27
    • 0033579697 scopus 로고    scopus 로고
    • 197 of the human emopamil binding protein are required for in vivo sterol Δ8-Δ7 isomerization
    • 197 of the human emopamil binding protein are required for in vivo sterol Δ8-Δ7 isomerization. Biochemistry 1999; 38: 1119-27.
    • (1999) Biochemistry , vol.38 , pp. 1119-1127
    • Moebius, F.F.1    Soellner, K.E.2    Fiechtner, B.3
  • 28
    • 0042424651 scopus 로고    scopus 로고
    • Disruption of ergosterol biosynthesis confers resistance to amphotericin B in Candida lusitaniae
    • Young LY, Hull CM, Heitman J. Disruption of ergosterol biosynthesis confers resistance to amphotericin B in Candida lusitaniae. Antimicrob Agents Chemother 2003; 47: 2717-24.
    • (2003) Antimicrob Agents Chemother , vol.47 , pp. 2717-2724
    • Young, L.Y.1    Hull, C.M.2    Heitman, J.3
  • 29
    • 79960884598 scopus 로고    scopus 로고
    • Fitness and virulence costs of Candida albicans FKS1 hot spot mutations associated with echinocandin resistance
    • Ben-Ami R, Garcia-Effron G, Lewis RE et al. Fitness and virulence costs of Candida albicans FKS1 hot spot mutations associated with echinocandin resistance. J Infect Dis 2011; 204: 626-35.
    • (2011) J Infect Dis , vol.204 , pp. 626-635
    • Ben-Ami, R.1    Garcia-Effron, G.2    Lewis, R.E.3
  • 30
    • 77949331142 scopus 로고    scopus 로고
    • Amphotericin B resistance leads to enhanced proteinase and phospholipase activity and reduced germ tube formation in Candida albicans
    • Kumar R, Shukla PK. Amphotericin B resistance leads to enhanced proteinase and phospholipase activity and reduced germ tube formation in Candida albicans. Fungal Biol 2010; 114: 189-97.
    • (2010) Fungal Biol , vol.114 , pp. 189-197
    • Kumar, R.1    Shukla, P.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.