-
3
-
-
74549185029
-
Supervised topic models
-
D. Blei and J. McAuliffe. Supervised topic models. In NIPS, 2007.
-
(2007)
NIPS
-
-
Blei, D.1
McAuliffe, J.2
-
5
-
-
33845519142
-
Visual categorization with bags of keypoints
-
Prague
-
C. Dance, J. Willamowski, L. Fan, C. Bray, and G. Csurka. Visual categorization with bags of keypoints. In ECCV International Workshop on Statistical Learning in Computer Vision., Prague, 2004.
-
(2004)
ECCV International Workshop on Statistical Learning in Computer Vision
-
-
Dance, C.1
Willamowski, J.2
Fan, L.3
Bray, C.4
Csurka, G.5
-
6
-
-
33745155436
-
A Bayesian hierarchical model for learning natural scene categories
-
L. Fei-Fei and P. Perona. A bayesian hierarchical model for learning natural scene categories. CVPR, pages 524-531, 2005.
-
(2005)
CVPR
, pp. 524-531
-
-
Fei-Fei, L.1
Perona, P.2
-
7
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. E. Hinton and S. Osindero. A fast learning algorithm for deep belief nets. Neural Computation, 18:2006, 2006.
-
(2006)
Neural Computation
, vol.18
, pp. 2006
-
-
Hinton, G.E.1
Osindero, S.2
-
8
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
July
-
G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, July 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
9
-
-
0034818212
-
Unsupervised learning by probabilistic latent semantic analysis
-
T. Hofmann. Unsupervised learning by probabilistic latent semantic analysis. In Machine Learning, page 2001, 2001.
-
(2001)
Machine Learning
, pp. 2001
-
-
Hofmann, T.1
-
10
-
-
84965099650
-
-
K. Kavukcuoglu, P. Sermanet, Y. lan Boureau, K. Gregor, M. Mathieu, and Y. Lecun. Learning convolutional feature hierarchies for visual recognition, 2010.
-
(2010)
Learning Convolutional Feature Hierarchies for Visual Recognition
-
-
Kavukcuoglu, K.1
Sermanet, P.2
Lan Boureau, Y.3
Gregor, K.4
Mathieu, M.5
Lecun, Y.6
-
11
-
-
79957489009
-
Disclda: Discriminative learning for dimensionality reduction and classification
-
S. Lacoste-Julien, F. Sha, and M. Jordan. Disclda: Discriminative learning for dimensionality reduction and classification. In NIPS, 2009.
-
(2009)
NIPS
-
-
Lacoste-Julien, S.1
Sha, F.2
Jordan, M.3
-
12
-
-
33845572523
-
Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
-
S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, pages 2169-2178, 2006.
-
(2006)
CVPR
, pp. 2169-2178
-
-
Lazebnik, S.1
Schmid, C.2
Ponce, J.3
-
13
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. IEEE, 86(11):2278-24, 1998.
-
(1998)
IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
14
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In ICML, pages 609-616, 2009.
-
(2009)
ICML
, pp. 609-616
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
15
-
-
3042535216
-
Distinctive image features from scaleinvariant keypoints
-
D. Lowe. Distinctive image features from scaleinvariant keypoints. International Journal of Computer Vision, 60(2):91-110, 2004.
-
(2004)
International Journal of Computer Vision
, vol.60
, Issue.2
, pp. 91-110
-
-
Lowe, D.1
-
16
-
-
80053445973
-
Learning deep energy models
-
L. Getoor and T. Scheffer, editors New York, NY, USA, June, ACM
-
J. Ngiam, Z. Chen, P. W. Koh, and A. Ng. Learning deep energy models. In L. Getoor and T. Scheffer, editors, Proceedings of the 28th International Conference on Machine Learning (ICML-11), ICML '11, pages 1105-1112, New York, NY, USA, June 2011. ACM.
-
(2011)
Proceedings of the 28th International Conference on Machine Learning (ICML-11), ICML '11
, pp. 1105-1112
-
-
Ngiam, J.1
Chen, Z.2
Koh, P.W.3
Ng, A.4
-
17
-
-
77955989954
-
Modeling pixel means and covariances using factorized thirdorder Boltzmann Machines
-
M. Ranzato and G. Hinton. Modeling pixel means and covariances using factorized thirdorder Boltzmann Machines. In CVPR, 2010.
-
(2010)
CVPR
-
-
Ranzato, M.1
Hinton, G.2
-
18
-
-
33745451385
-
The author-topic model for authors and documents
-
M. Rosen-Zvi, T. Griffiths, M. Steyvers, and P. Smyth. The author-topic model for authors and documents. In Uncertainty in Artificial Intelligence 20, pages 487-494, 2004.
-
(2004)
Uncertainty in Artificial Intelligence
, vol.20
, pp. 487-494
-
-
Rosen-Zvi, M.1
Griffiths, T.2
Steyvers, M.3
Smyth, P.4
-
19
-
-
85162037149
-
Using deep belief nets to learn covariance kernels for Gaussian processes
-
R. Salakhutdinov and G. E. Hinton. Using deep belief nets to learn covariance kernels for gaussian processes. In NIPS, 2008.
-
(2008)
NIPS
-
-
Salakhutdinov, R.1
Hinton, G.E.2
-
21
-
-
39749186647
-
Describing visual scenes using transformed objects and parts
-
March
-
E. Sudderth, A. Torralba, W. Freeman, and A. Willsky. Describing visual scenes using transformed objects and parts. Intl. Journal of Computer Vision, 77, March 2008.
-
(2008)
Intl Journal of Computer Vision
, vol.77
-
-
Sudderth, E.1
Torralba, A.2
Freeman, W.3
Willsky, A.4
|