메뉴 건너뛰기




Volumn 9, Issue , 2010, Pages 1-8

Learning the structure of deep sparse graphical models

Author keywords

[No Author keywords available]

Indexed keywords

DEEP BELIEF NETWORKS; GAUSSIANS; GRAPHICAL MODEL; HIDDEN LAYERS; HIDDEN UNITS; IMAGE DATA; MARKOV CHAIN MONTE CARLO; MODEL COMPLEXES; NON-PARAMETRIC BAYESIAN;

EID: 84862281026     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (34)

References (26)
  • 1
    • 33750511893 scopus 로고    scopus 로고
    • Variational Bayesian learning of directed graphical models with hidden variables
    • M. J. Beal and Z. Ghahramani. Variational Bayesian learning of directed graphical models with hidden variables. Bayesian Analysis, 1(4):793-832, 2006.
    • (2006) Bayesian Analysis , vol.1 , Issue.4 , pp. 793-832
    • Beal, M.J.1    Ghahramani, Z.2
  • 8
    • 0032603958 scopus 로고    scopus 로고
    • Variational learning in nonlinear Gaussian belief networks
    • B. J. Frey and G. E. Hinton. Variational learning in nonlinear Gaussian belief networks. Neural Computation, 11 (1):193-213, 1999.
    • (1999) Neural Computation , vol.11 , Issue.1 , pp. 193-213
    • Frey, B.J.1    Hinton, G.E.2
  • 10
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about network structure
    • N. Friedman and D. Koller. Being Bayesian about network structure. Machine Learning, 50(1-2):95-125, 2003.
    • (2003) Machine Learning , vol.50 , Issue.1-2 , pp. 95-125
    • Friedman, N.1    Koller, D.2
  • 13
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20(3):197-243, 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 14
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313 (5786):504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.2
  • 15
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • July
    • G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18 (7):1527-1554, July 2006.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 16
    • 31844439894 scopus 로고    scopus 로고
    • Exact Bayesian structure discovery in Bayesian networks
    • M. Koivisto and K. Sood. Exact Bayesian structure discovery in Bayesian networks. Journal of Machine Learning Research, 5:549-573, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 549-573
    • Koivisto, M.1    Sood, K.2
  • 17
    • 0032203257 scopus 로고    scopus 로고
    • Gradientbased learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradientbased learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 18
    • 0442309554 scopus 로고    scopus 로고
    • The use of multipletry method and local optimization in Metropolis sampling
    • J. S. Liu, F. Liang, and W. H. Wong. The use of multipletry method and local optimization in Metropolis sampling. Journal of the American Statistical Association, 95(449):121-134, 2000.
    • (2000) Journal of the American Statistical Association , vol.95 , Issue.449 , pp. 121-134
    • Liu, J.S.1    Liang, F.2    Wong, W.H.3
  • 20
    • 44049116681 scopus 로고
    • Connectionist learning in belief networks
    • July
    • R. M. Neal. Connectionist learning in belief networks. Artificial Intelligence, 56:71-113, July 1992.
    • (1992) Artificial Intelligence , vol.56 , pp. 71-113
    • Neal, R.M.1
  • 24
    • 0000564723 scopus 로고
    • On quasi-stationary distributions in discrete-time Markov chains with a denumerable infinity of states
    • December
    • E. Seneta and D. Vere-Jones. On quasi-stationary distributions in discrete-time Markov chains with a denumerable infinity of states. Journal of Applied Probability, 3 (2):403-434, December 1966.
    • (1966) Journal of Applied Probability , vol.3 , Issue.2 , pp. 403-434
    • Seneta, E.1    Vere-Jones, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.