-
1
-
-
33750511893
-
Variational Bayesian learning of directed graphical models with hidden variables
-
M. J. Beal and Z. Ghahramani. Variational Bayesian learning of directed graphical models with hidden variables. Bayesian Analysis, 1(4):793-832, 2006.
-
(2006)
Bayesian Analysis
, vol.1
, Issue.4
, pp. 793-832
-
-
Beal, M.J.1
Ghahramani, Z.2
-
5
-
-
0003632227
-
-
Cambridge University Press, Cambridge, UK
-
G. Fayolle, V. A. Malyshev, and M. V. Menshikov. Topics in the Constructive Theory of Countable Markov Chains. Cambridge University Press, Cambridge, UK, 2008.
-
(2008)
Topics in the Constructive Theory of Countable Markov Chains
-
-
Fayolle, G.1
Malyshev, V.A.2
Menshikov, M.V.3
-
8
-
-
0032603958
-
Variational learning in nonlinear Gaussian belief networks
-
B. J. Frey and G. E. Hinton. Variational learning in nonlinear Gaussian belief networks. Neural Computation, 11 (1):193-213, 1999.
-
(1999)
Neural Computation
, vol.11
, Issue.1
, pp. 193-213
-
-
Frey, B.J.1
Hinton, G.E.2
-
10
-
-
0037262841
-
Being Bayesian about network structure
-
N. Friedman and D. Koller. Being Bayesian about network structure. Machine Learning, 50(1-2):95-125, 2003.
-
(2003)
Machine Learning
, vol.50
, Issue.1-2
, pp. 95-125
-
-
Friedman, N.1
Koller, D.2
-
13
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20(3):197-243, 1995.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
14
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313 (5786):504-507, 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.2
-
15
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
July
-
G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18 (7):1527-1554, July 2006.
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
16
-
-
31844439894
-
Exact Bayesian structure discovery in Bayesian networks
-
M. Koivisto and K. Sood. Exact Bayesian structure discovery in Bayesian networks. Journal of Machine Learning Research, 5:549-573, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 549-573
-
-
Koivisto, M.1
Sood, K.2
-
17
-
-
0032203257
-
Gradientbased learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradientbased learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
18
-
-
0442309554
-
The use of multipletry method and local optimization in Metropolis sampling
-
J. S. Liu, F. Liang, and W. H. Wong. The use of multipletry method and local optimization in Metropolis sampling. Journal of the American Statistical Association, 95(449):121-134, 2000.
-
(2000)
Journal of the American Statistical Association
, vol.95
, Issue.449
, pp. 121-134
-
-
Liu, J.S.1
Liang, F.2
Wong, W.H.3
-
20
-
-
44049116681
-
Connectionist learning in belief networks
-
July
-
R. M. Neal. Connectionist learning in belief networks. Artificial Intelligence, 56:71-113, July 1992.
-
(1992)
Artificial Intelligence
, vol.56
, pp. 71-113
-
-
Neal, R.M.1
-
24
-
-
0000564723
-
On quasi-stationary distributions in discrete-time Markov chains with a denumerable infinity of states
-
December
-
E. Seneta and D. Vere-Jones. On quasi-stationary distributions in discrete-time Markov chains with a denumerable infinity of states. Journal of Applied Probability, 3 (2):403-434, December 1966.
-
(1966)
Journal of Applied Probability
, vol.3
, Issue.2
, pp. 403-434
-
-
Seneta, E.1
Vere-Jones, D.2
|