메뉴 건너뛰기




Volumn 32, Issue 1, 2017, Pages 71-86

The use of logistic model tree (LMT) for pixel- and object-based classifications using high-resolution WorldView-2 imagery

Author keywords

boosting; decision tree; Logistic model tree; object based classification; random forest

Indexed keywords

ACCURACY ASSESSMENT; ALGORITHM; IMAGE CLASSIFICATION; IMAGE RESOLUTION; IMAGERY; NUMERICAL MODEL; PIXEL; REGRESSION ANALYSIS; WORLDVIEW;

EID: 84954224388     PISSN: 10106049     EISSN: None     Source Type: Journal    
DOI: 10.1080/10106049.2015.1128486     Document Type: Article
Times cited : (39)

References (59)
  • 2
    • 84890224189 scopus 로고    scopus 로고
    • Quantitative evaluation of variations in rule-based classifications of land cover in urban neighbourhoods using WorldView-2 imagery
    • Belgiu M, Drǎguţ L, Strobl J. 2014. Quantitative evaluation of variations in rule-based classifications of land cover in urban neighbourhoods using WorldView-2 imagery. ISPRS J Photogramm Remote Sens. 87:205–215.10.1016/j.isprsjprs.2013.11.007
    • (2014) ISPRS J Photogramm Remote Sens , vol.87 , pp. 205-215
    • Belgiu, M.1    Drǎguţ, L.2    Strobl, J.3
  • 3
    • 1642487678 scopus 로고    scopus 로고
    • Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information
    • Benz UC, Hofmann P, Willhauck G, Lingenfelder I, Heynen M. 2004. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J Photogramm Remote Sens. 58:239–258.10.1016/j.isprsjprs.2003.10.002
    • (2004) ISPRS J Photogramm Remote Sens , vol.58 , pp. 239-258
    • Benz, U.C.1    Hofmann, P.2    Willhauck, G.3    Lingenfelder, I.4    Heynen, M.5
  • 4
    • 73249139477 scopus 로고    scopus 로고
    • Object based image analysis for remote sensing
    • Blaschke T. 2010. Object based image analysis for remote sensing. ISPRS J Photogramm Remote Sens. 65:2–16.10.1016/j.isprsjprs.2009.06.004
    • (2010) ISPRS J Photogramm Remote Sens , vol.65 , pp. 2-16
    • Blaschke, T.1
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. 2001. Random forests. Mach Learn. 45:5–32.10.1023/A:1010933404324
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 6
    • 84964515999 scopus 로고    scopus 로고
    • Assessing the utility WorldView-2 imagery for tree species mapping in South African subtropical humid forest and the conservation implications: Dukuduku forest patch as case study
    • Cho MA, Malahlela O, Ramoelo A. 2015. Assessing the utility WorldView-2 imagery for tree species mapping in South African subtropical humid forest and the conservation implications:Dukuduku forest patch as case study. Int J Appl Earth Obs Geoinf. 38:349–357.10.1016/j.jag.2015.01.015
    • (2015) Int J Appl Earth Obs Geoinf , vol.38 , pp. 349-357
    • Cho, M.A.1    Malahlela, O.2    Ramoelo, A.3
  • 8
    • 0032216156 scopus 로고    scopus 로고
    • Global land cover classifications at 8 km spatial resolution: the use of training data derived from Landsat imagery in decision tree classifiers
    • De Fries RS, Hansen M, Townshend JRG, Sohlberg R. 1998. Global land cover classifications at 8 km spatial resolution:the use of training data derived from Landsat imagery in decision tree classifiers. Int J Remote Sens. 19:3141–3168.10.1080/014311698214235
    • (1998) Int J Remote Sens , vol.19 , pp. 3141-3168
    • De Fries, R.S.1    Hansen, M.2    Townshend, J.R.G.3    Sohlberg, R.4
  • 9
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization
    • Dietterich TG. 2000. An experimental comparison of three methods for constructing ensembles of decision trees:bagging, boosting, and randomization. Mach Learn. 40:139–157.10.1023/A:1007607513941
    • (2000) Mach Learn , vol.40 , pp. 139-157
    • Dietterich, T.G.1
  • 11
    • 77951189897 scopus 로고    scopus 로고
    • ESP: a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data
    • Drǎguţ L, Tiede D, Levick SR. 2010. ESP:a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int J Geogr Inf Sci. 24:859–871.10.1080/13658810903174803
    • (2010) Int J Geogr Inf Sci , vol.24 , pp. 859-871
    • Drǎguţ, L.1    Tiede, D.2    Levick, S.R.3
  • 12
    • 0036213079 scopus 로고    scopus 로고
    • Status of land cover classification accuracy assessment
    • Foody GM. 2002. Status of land cover classification accuracy assessment. Remote Sens Environ. 80:185–201.10.1016/S0034-4257(01)00295-4
    • (2002) Remote Sens Environ , vol.80 , pp. 185-201
    • Foody, G.M.1
  • 13
    • 0032117676 scopus 로고    scopus 로고
    • Technical note: using model trees for classification
    • Frank E, Wang Y, Inglis S, Holmes G, Witten IH. 1998. Technical note:using model trees for classification. Mach Learn. 32:63–76.10.1023/A:1007421302149
    • (1998) Mach Learn , vol.32 , pp. 63-76
    • Frank, E.1    Wang, Y.2    Inglis, S.3    Holmes, G.4    Witten, I.H.5
  • 14
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y, Schapire RE. 1997. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci. 55:119–139.10.1006/jcss.1997.1504
    • (1997) J Comput Syst Sci , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 15
    • 0344972104 scopus 로고    scopus 로고
    • Decision tree classification of land cover from remotely sensed data
    • Friedl MA, Brodley CE. 1997. Decision tree classification of land cover from remotely sensed data. Remote Sens Environ. 61:399–409.10.1016/S0034-4257(97)00049-7
    • (1997) Remote Sens Environ , vol.61 , pp. 399-409
    • Friedl, M.A.1    Brodley, C.E.2
  • 16
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors)
    • Friedman J, Hastie T, Tibshirani R. 2000. Additive logistic regression:a statistical view of boosting (with discussion and a rejoinder by the authors). Ann Stat. 28:337–407.10.1214/aos/1016218223
    • (2000) Ann Stat , vol.28 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 17
    • 3543051838 scopus 로고    scopus 로고
    • Functional trees
    • Gama J. 2004. Functional trees. Mach Learn. 55:219–250.10.1023/B:MACH.0000027782.67192.13
    • (2004) Mach Learn , vol.55 , pp. 219-250
    • Gama, J.1
  • 18
    • 84886874731 scopus 로고    scopus 로고
    • Assessment of pan-sharpened very high-resolution WorldView-2 images
    • Ghosh A, Joshi PK. 2013. Assessment of pan-sharpened very high-resolution WorldView-2 images. Int J Remote Sens. 34:8336–8359.10.1080/01431161.2013.838706
    • (2013) Int J Remote Sens , vol.34 , pp. 8336-8359
    • Ghosh, A.1    Joshi, P.K.2
  • 19
    • 84897586103 scopus 로고    scopus 로고
    • A comparison of selected classification algorithms for mapping bamboo patches in lower Gangetic plains using very high resolution WorldView 2 imagery
    • Ghosh A, Joshi PK. 2014. A comparison of selected classification algorithms for mapping bamboo patches in lower Gangetic plains using very high resolution WorldView 2 imagery. Int J Appl Earth Obs Geoinf. 26:298–311.10.1016/j.jag.2013.08.011
    • (2014) Int J Appl Earth Obs Geoinf , vol.26 , pp. 298-311
    • Ghosh, A.1    Joshi, P.K.2
  • 20
    • 84876300410 scopus 로고    scopus 로고
    • Integration of orthoimagery and lidar data for object-based urban thematic mapping using random forests
    • Guan HY, Li J, Chapman M, Deng F, Ji Z, Yang X. 2013. Integration of orthoimagery and lidar data for object-based urban thematic mapping using random forests. Int J Remote Sens. 34:5166–5186.10.1080/01431161.2013.788261
    • (2013) Int J Remote Sens , vol.34 , pp. 5166-5186
    • Guan, H.Y.1    Li, J.2    Chapman, M.3    Deng, F.4    Ji, Z.5    Yang, X.6
  • 21
    • 0034655867 scopus 로고    scopus 로고
    • Global land cover classification at 1 km spatial resolution using a classification tree approach
    • Hansen MC, Defries RS, Townshend JRG, Sohlberg R. 2000. Global land cover classification at 1 km spatial resolution using a classification tree approach. Int J Remote Sens. 21:1331–1364.10.1080/014311600210209
    • (2000) Int J Remote Sens , vol.21 , pp. 1331-1364
    • Hansen, M.C.1    Defries, R.S.2    Townshend, J.R.G.3    Sohlberg, R.4
  • 22
    • 0029667616 scopus 로고    scopus 로고
    • Classification trees: an alternative to traditional land cover classifiers
    • Hansen M, Dubayah R, Defrıes R. 1996. Classification trees:an alternative to traditional land cover classifiers. Int J Remote Sens. 17:1075–1081.10.1080/01431169608949069
    • (1996) Int J Remote Sens , vol.17 , pp. 1075-1081
    • Hansen, M.1    Dubayah, R.2    Defrıes, R.3
  • 23
    • 84896365008 scopus 로고    scopus 로고
    • High-resolution land cover classification using Random Forest
    • Hayes MM, Miller SN, Murphy MA. 2014. High-resolution land cover classification using Random Forest. Remote Sens Lett. 5:112–121.10.1080/2150704X.2014.882526
    • (2014) Remote Sens Lett , vol.5 , pp. 112-121
    • Hayes, M.M.1    Miller, S.N.2    Murphy, M.A.3
  • 24
    • 70349416395 scopus 로고    scopus 로고
    • Classifiers vs. input variables-the drivers in image classification for land cover mapping
    • Heinl M, Walde J, Tappeiner G, Tappeiner U. 2009. Classifiers vs. input variables-the drivers in image classification for land cover mapping. Int J Appl Earth Obs Geoinf. 11:423–430.10.1016/j.jag.2009.08.002
    • (2009) Int J Appl Earth Obs Geoinf , vol.11 , pp. 423-430
    • Heinl, M.1    Walde, J.2    Tappeiner, G.3    Tappeiner, U.4
  • 25
    • 84856723719 scopus 로고    scopus 로고
    • An object-based classification of mangroves using a hybrid decision tree-support vector machine approach
    • Heumann BW. 2011. An object-based classification of mangroves using a hybrid decision tree-support vector machine approach. Remote Sens. 3:2440–2460.10.3390/rs3112440
    • (2011) Remote Sens , vol.3 , pp. 2440-2460
    • Heumann, B.W.1
  • 27
    • 85006960733 scopus 로고    scopus 로고
    • A comprehensive evaluation of PAN-sharpening algorithms coupled with resampling methods for image synthesis of very high resolution remotely sensed satellite data
    • Jawak SD, Luis AJ. 2013. A comprehensive evaluation of PAN-sharpening algorithms coupled with resampling methods for image synthesis of very high resolution remotely sensed satellite data. Adv Rem S. 2:332–344.
    • (2013) Adv Rem S , vol.2 , pp. 332-344
    • Jawak, S.D.1    Luis, A.J.2
  • 29
    • 84937961559 scopus 로고    scopus 로고
    • Object-based approach for multi-scale mangrove composition mapping using multi-resolution image datasets
    • Kamal M, Phinn S, Johansen K. 2015. Object-based approach for multi-scale mangrove composition mapping using multi-resolution image datasets. Remote Sens. 7:4753–4783.10.3390/rs70404753
    • (2015) Remote Sens , vol.7 , pp. 4753-4783
    • Kamal, M.1    Phinn, S.2    Johansen, K.3
  • 30
    • 84901574703 scopus 로고    scopus 로고
    • Effective automated prediction of vertebral column pathologies based on logistic model tree with SMOTE preprocessing
    • Article No: 50
    • Karabulut EM, Ibrikci T. 2014. Effective automated prediction of vertebral column pathologies based on logistic model tree with SMOTE preprocessing. J Med Syst. 38:1–9. Article No:50. http://link.springer.com/journal/10916/38/5/page/1
    • (2014) J Med Syst , vol.38 , pp. 1-9
    • Karabulut, E.M.1    Ibrikci, T.2
  • 31
    • 67650759361 scopus 로고    scopus 로고
    • A kernel functions analysis for support vector machines for land cover classification
    • Kavzoglu T, Colkesen I. 2009. A kernel functions analysis for support vector machines for land cover classification. Int J Appl Earth Obs Geoinf. 11:352–359.10.1016/j.jag.2009.06.002
    • (2009) Int J Appl Earth Obs Geoinf , vol.11 , pp. 352-359
    • Kavzoglu, T.1    Colkesen, I.2
  • 33
    • 84875922650 scopus 로고    scopus 로고
    • An assessment of the effectiveness of a rotation forest ensemble for land-use and land-cover mapping
    • Kavzoglu T, Colkesen I. 2013. An assessment of the effectiveness of a rotation forest ensemble for land-use and land-cover mapping. Int J Remote Sens. 34:4224–4241.10.1080/01431161.2013.774099
    • (2013) Int J Remote Sens , vol.34 , pp. 4224-4241
    • Kavzoglu, T.1    Colkesen, I.2
  • 34
    • 84942590106 scopus 로고    scopus 로고
    • Object based classification with rotation forest ensemble learning algorithm using very high resolution WorldView-2 image
    • Kavzoglu T, Colkesen I, Yomralioglu T. 2015. Object based classification with rotation forest ensemble learning algorithm using very high resolution WorldView-2 image. Remote Sens Lett. 6:834–843.10.1080/2150704X.2015.1084550
    • (2015) Remote Sens Lett , vol.6 , pp. 834-843
    • Kavzoglu, T.1    Colkesen, I.2    Yomralioglu, T.3
  • 36
    • 21244500957 scopus 로고    scopus 로고
    • Logistic model trees
    • Landwehr N, Hall M, Frank E. 2005. Logistic model trees. Mach Learn. 59:161–205.10.1007/s10994-005-0466-3
    • (2005) Mach Learn , vol.59 , pp. 161-205
    • Landwehr, N.1    Hall, M.2    Frank, E.3
  • 37
    • 84894607481 scopus 로고    scopus 로고
    • Comparison of classification algorithms and training sample sizes in urban land classification with Landsat thematic mapper imagery
    • Li CC, Wang J, Wang L, Hu LY, Gong P. 2014. Comparison of classification algorithms and training sample sizes in urban land classification with Landsat thematic mapper imagery. Remote Sens. 6:964–983.10.3390/rs6020964
    • (2014) Remote Sens , vol.6 , pp. 964-983
    • Li, C.C.1    Wang, J.2    Wang, L.3    Hu, L.Y.4    Gong, P.5
  • 38
    • 34047163965 scopus 로고    scopus 로고
    • Comparative assessment of the measures of thematic classification accuracy
    • Liu CR, Frazier P, Kumar L. 2007. Comparative assessment of the measures of thematic classification accuracy. Remote Sens Environ. 107:606–616.10.1016/j.rse.2006.10.010
    • (2007) Remote Sens Environ , vol.107 , pp. 606-616
    • Liu, C.R.1    Frazier, P.2    Kumar, L.3
  • 39
    • 33947591833 scopus 로고    scopus 로고
    • A survey of image classification methods and techniques for improving classification performance
    • Lu D, Weng Q. 2007. A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens. 28:823–870.10.1080/01431160600746456
    • (2007) Int J Remote Sens , vol.28 , pp. 823-870
    • Lu, D.1    Weng, Q.2
  • 40
    • 84923357893 scopus 로고    scopus 로고
    • Assessing machine-learning algorithms and image- and lidar-derived variables for GEOBIA classification of mining and mine reclamation
    • Maxwell AE, Warner TA, Strager MP, Conley JF, Sharp AL. 2015. Assessing machine-learning algorithms and image- and lidar-derived variables for GEOBIA classification of mining and mine reclamation. Int J Remote Sens. 36:954–978.10.1080/01431161.2014.1001086
    • (2015) Int J Remote Sens , vol.36 , pp. 954-978
    • Maxwell, A.E.1    Warner, T.A.2    Strager, M.P.3    Conley, J.F.4    Sharp, A.L.5
  • 41
    • 13344278660 scopus 로고    scopus 로고
    • Random forest classifier for remote sensing classification
    • Pal M. 2005. Random forest classifier for remote sensing classification. Int J Remote Sens. 26:217–222.10.1080/01431160412331269698
    • (2005) Int J Remote Sens , vol.26 , pp. 217-222
    • Pal, M.1
  • 42
    • 0141569007 scopus 로고    scopus 로고
    • An assessment of the effectiveness of decision tree methods for land cover classification
    • Pal M, Mather PM. 2003. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sens Environ. 86:554–565.10.1016/S0034-4257(03)00132-9
    • (2003) Remote Sens Environ , vol.86 , pp. 554-565
    • Pal, M.1    Mather, P.M.2
  • 43
    • 4444230479 scopus 로고    scopus 로고
    • Assessment of the effectiveness of support vector machines for hyperspectral data
    • Pal M, Mather PM. 2004. Assessment of the effectiveness of support vector machines for hyperspectral data. Future Gener Comput Syst. 20:1215–1225.10.1016/j.future.2003.11.011
    • (2004) Future Gener Comput Syst , vol.20 , pp. 1215-1225
    • Pal, M.1    Mather, P.M.2
  • 44
    • 79956324768 scopus 로고    scopus 로고
    • Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment
    • Pontius RG, Millones M. 2011. Death to Kappa:birth of quantity disagreement and allocation disagreement for accuracy assessment. Int J Remote Sens. 32:4407–4429.10.1080/01431161.2011.552923
    • (2011) Int J Remote Sens , vol.32 , pp. 4407-4429
    • Pontius, R.G.1    Millones, M.2
  • 46
    • 1942452360 scopus 로고    scopus 로고
    • Remote sensing technology for mapping and monitoring land-cover and land-use change
    • Rogan J, Chen DM. 2004. Remote sensing technology for mapping and monitoring land-cover and land-use change. Progr Plann. 61:301–325.10.1016/S0305-9006(03)00066-7
    • (2004) Progr Plann , vol.61 , pp. 301-325
    • Rogan, J.1    Chen, D.M.2
  • 47
    • 84865546672 scopus 로고    scopus 로고
    • HIV-1 CRF01_AE coreceptor usage prediction using kernel methods based logistic model trees
    • Shoombuatong W, Hongjaisee S, Barin F, Chaijaruwanich J, Samleerat T. 2012. HIV-1 CRF01_AE coreceptor usage prediction using kernel methods based logistic model trees. Comput Biol Med. 42:885–889.10.1016/j.compbiomed.2012.06.011
    • (2012) Comput Biol Med , vol.42 , pp. 885-889
    • Shoombuatong, W.1    Hongjaisee, S.2    Barin, F.3    Chaijaruwanich, J.4    Samleerat, T.5
  • 48
    • 84887284057 scopus 로고    scopus 로고
    • Developing an object-based hyperspatial image classifier with a case study using WorldView-2 data
    • Sridharan H, Qiu F. 2013. Developing an object-based hyperspatial image classifier with a case study using WorldView-2 data. Photogram Eng Remote Sens. 79:1027–1036.10.14358/PERS.79.11.1027
    • (2013) Photogram Eng Remote Sens , vol.79 , pp. 1027-1036
    • Sridharan, H.1    Qiu, F.2
  • 49
    • 0031255580 scopus 로고    scopus 로고
    • Selecting and interpreting measures of thematic classification accuracy
    • Stehman SV. 1997. Selecting and interpreting measures of thematic classification accuracy. Remote Sens Environ. 62:77–89.10.1016/S0034-4257(97)00083-7
    • (1997) Remote Sens Environ , vol.62 , pp. 77-89
    • Stehman, S.V.1
  • 50
    • 33646420865 scopus 로고    scopus 로고
    • Speeding up logistic model tree induction
    • Jorge A., Torgo L., Brazdil P.B., Camacho R., Gama J., (eds), Heidelberg: Springer
    • Sumner M, Frank E, Hall M. 2005. Speeding up logistic model tree induction. In:Jorge A, Torgo L, Brazdil PB, Camacho R, Gama J, editors. Knowledge Discovery in Databases:PKDD 2005. Heidelberg:Springer; p. 675–683.
    • (2005) Knowledge Discovery in Databases: PKDD 2005 , pp. 675-683
    • Sumner, M.1    Frank, E.2    Hall, M.3
  • 51
    • 0041920667 scopus 로고    scopus 로고
    • A comparison of urban mapping methods using high-resolution digital imagery
    • Thomas N, Hendrix C, Congalton RG. 2003. A comparison of urban mapping methods using high-resolution digital imagery. Photogramm Eng Remote Sens. 69:963–972.10.14358/PERS.69.9.963
    • (2003) Photogramm Eng Remote Sens , vol.69 , pp. 963-972
    • Thomas, N.1    Hendrix, C.2    Congalton, R.G.3
  • 53
    • 78650756971 scopus 로고    scopus 로고
    • Object-based image analysis through nonlinear scale-space filtering
    • Tzotsos A, Karantzalos K, Argialas D. 2011. Object-based image analysis through nonlinear scale-space filtering. ISPRS J Photogramm Remote Sens. 66:2–16.10.1016/j.isprsjprs.2010.07.001
    • (2011) ISPRS J Photogramm Remote Sens , vol.66 , pp. 2-16
    • Tzotsos, A.1    Karantzalos, K.2    Argialas, D.3
  • 54
    • 84861335868 scopus 로고    scopus 로고
    • Object based image analysis and data mining applied to a remotely sensed Landsat time-series to map sugarcane over large areas
    • Vieira MA, Formaggio AR, Rennó CD, Atzberger C, Aguiar DA, Mello MP. 2012. Object based image analysis and data mining applied to a remotely sensed Landsat time-series to map sugarcane over large areas. Remote Sens Environ. 123:553–562.10.1016/j.rse.2012.04.011
    • (2012) Remote Sens Environ , vol.123 , pp. 553-562
    • Vieira, M.A.1    Formaggio, A.R.2    Rennó, C.D.3    Atzberger, C.4    Aguiar, D.A.5    Mello, M.P.6
  • 55
    • 84938343469 scopus 로고    scopus 로고
    • Properties of the quantity disagreement and the allocation disagreement
    • Warrens MJ. 2015. Properties of the quantity disagreement and the allocation disagreement. Int J Remote Sens. 36:1439–1446.10.1080/01431161.2015.1011794
    • (2015) Int J Remote Sens , vol.36 , pp. 1439-1446
    • Warrens, M.J.1
  • 57
    • 84880646739 scopus 로고    scopus 로고
    • Object features for pixel-based classification of urban areas comparing different machine learning algorithms
    • Wolf N. 2013. Object features for pixel-based classification of urban areas comparing different machine learning algorithms. Photogramm Fernerkun. 149–161.10.1127/1432-8364/2013/0166
    • (2013) Photogramm Fernerkun , pp. 149-161
    • Wolf, N.1
  • 58
    • 84921369153 scopus 로고    scopus 로고
    • Fusion of high spatial resolution WorldView-2 imagery and LiDAR pseudo-waveform for object-based image analysis
    • Zhou YH, Qiu F. 2015. Fusion of high spatial resolution WorldView-2 imagery and LiDAR pseudo-waveform for object-based image analysis. ISPRS J Photogramm Remote Sens. 101:221–232.10.1016/j.isprsjprs.2014.12.013
    • (2015) ISPRS J Photogramm Remote Sens , vol.101 , pp. 221-232
    • Zhou, Y.H.1    Qiu, F.2
  • 59
    • 56749092237 scopus 로고    scopus 로고
    • Ensemble-trees: leveraging ensemble power inside decision trees
    • Zimmermann A. 2008. Ensemble-trees:leveraging ensemble power inside decision trees. Discovery Sci Proceed. 5255:76–87.10.1007/978-3-540-88411-8
    • (2008) Discovery Sci Proceed , vol.5255 , pp. 76-87
    • Zimmermann, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.