메뉴 건너뛰기




Volumn 2013, Issue 3, 2013, Pages 149-161

Object features for pixel-based classification of urban areas comparing different machine learning algorithms

Author keywords

Machine learning; Object based feature extraction; Spatialspectral classification; Urban remote sensing

Indexed keywords


EID: 84880646739     PISSN: 14328364     EISSN: None     Source Type: Journal    
DOI: 10.1127/1432-8364/2013/0166     Document Type: Article
Times cited : (12)

References (35)
  • 2
    • 0001812168 scopus 로고    scopus 로고
    • Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation
    • BAATZ, M. & SCHÄPE, A., 2000: Multiresolution segmentation: an optimization approach for high quality multi-scale image segmentation. -Angewandte Geographische Informationsverarbeitung XII: 12-23.
    • (2000) Angewandte Geographische Informationsverarbeitung , vol.7 , pp. 12-23
    • Baatz, M.1    Schäpe, A.2
  • 7
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • New York, USA
    • BREIMAN, L., 1996: Bagging predictors. -Machine Learning 24 (2): 123-140, New York, USA.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 8
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • BREIMAN, L., 2001: Random Forests. -Machine Learning 45 (1): 5-32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 9
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • BURGES, C.J., 1998: A Tutorial on Support Vector Machines for Pattern Recognition. -Data Mining and Knowledge Discovery 2 (2): 121-167.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.1
  • 10
    • 0142003038 scopus 로고    scopus 로고
    • A multi-scale segmentation/object relationship modelling methodology for landscape analysis
    • BURNETT, C. & BLASCHKE, T., 2003: A multi-scale segmentation/object relationship modelling methodology for landscape analysis. -Ecological Modelling 168 (3): 233-249.
    • (2003) Ecological Modelling , vol.168 , Issue.3 , pp. 233-249
    • Burnett, C.1    Blaschke, T.2
  • 11
    • 84875878018 scopus 로고    scopus 로고
    • Image objects and geographic objects
    • BLASCHKE, T., LANG, S. & HAY, G.J. (eds.) Spatial Concepts for Knowledge-Driven Remote Sensing Applications:, Springer-Verlag, Berlin.
    • CASTILLA, G. & HAY, G.J., 2008: Image objects and geographic objects. -BLASCHKE, T., LANG, S. & HAY, G.J. (eds.): Object-Based Image Analysis. Spatial Concepts for Knowledge-Driven Remote Sensing Applications: 91-110, Springer-Verlag, Berlin.
    • (2008) Object-Based Image Analysis , pp. 91-110
    • Castilla, G.1    Hay, G.J.2
  • 13
    • 84455200427 scopus 로고    scopus 로고
    • A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using spot-5 hrg imagery
    • DURO, D.C., FRANKLIN, S.E. & DUBÉ, M.G., 2012: A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. -Remote Sensing of Environment 118: 259-272.
    • (2012) Remote Sensing of Environment , vol.118 , pp. 259-272
    • Duro, D.C.1    Franklin, S.E.2    Dubé, M.G.3
  • 16
    • 79957880938 scopus 로고    scopus 로고
    • Urban and tourist land use patterns and water consumption: Evidence from mallorca, balearic islands
    • HOF, A. & SCHMITT, T., 2011: Urban and tourist land use patterns and water consumption: Evidence from Mallorca, Balearic Islands. -Land Use Policy 28 (4): 792-804.
    • (2011) Land Use Policy , vol.28 , Issue.4 , pp. 792-804
    • Hof, A.1    Schmitt, T.2
  • 18
  • 20
    • 33947591833 scopus 로고    scopus 로고
    • A survey of image classification methods and techniques for improving classification performance
    • LU, D. & WENG, Q., 2007: A survey of image classification methods and techniques for improving classification performance. -International Journal of Remote Sensing 28 (5): 823-870.
    • (2007) International Journal of Remote Sensing , vol.28 , Issue.5 , pp. 823-870
    • Lu, D.1    Weng, Q.2
  • 21
    • 84856742245 scopus 로고    scopus 로고
    • Machine learning comparison between worldview-2 andquickbird-2-simulated imagery regarding object-based urban land cover classification
    • NOVACK, T., ESCH, T., KUX, H.J.H. & STILLA, U., 2011: Machine Learning Comparison between WorldView-2 andQuickBird-2-Simulated Imagery Regarding Object-Based Urban Land Cover Classification. -Remote Sensing 3 (10): 2263-2282.
    • (2011) Remote Sensing , vol.3 , Issue.10 , pp. 2263-2282
    • Novack, T.1    Esch, T.2    Kux, H.J.H.3    Stilla, U.4
  • 25
    • 0032084126 scopus 로고    scopus 로고
    • Design and analysis for thematic map accuracy assessment
    • STEHMAN, S.V. & CZAPLEWSKI, R.L., 1998: Design and Analysis for Thematic Map Accuracy Assessment. -Remote Sensing of Environment 64 (3): 331-344.
    • (1998) Remote Sensing of Environment , vol.64 , Issue.3 , pp. 331-344
    • Stehman, S.V.1    Czaplewski, R.L.2
  • 27
    • 67949115614 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques
    • TARABALKA, Y., BENEDIKTSSON, J.A. & CHANUSSOT, J., 2009: Spectral-Spatial Classification of Hyperspectral Imagery Based on Partitional Clustering Techniques. -IEEE Transactions on Geoscience and Remote Sensing 47 (8): 2973-2987.
    • (2009) IEEE Transactions on Geoscience and Remote Sensing , vol.47 , Issue.8 , pp. 2973-2987
    • Tarabalka, Y.1    Benediktsson, J.A.2    Chanussot, J.3
  • 33
    • 10844220846 scopus 로고    scopus 로고
    • Integration of object-based and pixel-based classification for mapping mangroves with ikonos imagery
    • WANG, L., SOUSA, W.P. & GONG, P., 2004: Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery. -International Journal of Remote Sensing 25 (24): 5655-5668.
    • (2004) International Journal of Remote Sensing , vol.25 , Issue.24 , pp. 5655-5668
    • Wang, L.1    Sousa, W.P.2    Gong, P.3
  • 35
    • 84875655696 scopus 로고    scopus 로고
    • Machine learning for the exhaustive evaluation of objectbased feature spaces
    • WOLF, N., HOF, A. & JÜRGENS, C., 2012: Machine learning for the exhaustive evaluation of objectbased feature spaces. -GEOBIA 2012: 267-272.
    • (2012) GEOBIA , vol.2012 , pp. 267-272
    • Wolf, N.1    Hof, A.2    Jürgens, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.