-
1
-
-
84969320339
-
-
[Internet] Feynman RP. http://calteches.library.caltech.edu/1976/1/1960Bottom.pdf.
-
-
-
Feynman, R.P.1
-
3
-
-
0012392952
-
Semiconductor Nanocrystals as Fluorescent Biological Labels
-
Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor Nanocrystals as Fluorescent Biological Labels. Science. 1998; 281: 2013-6. doi:10.1126/science.281.5385.2013.
-
(1998)
Science
, vol.281
, pp. 2013-2016
-
-
Bruchez, M.1
Moronne, M.2
Gin, P.3
Weiss, S.4
Alivisatos, A.P.5
-
4
-
-
33751410697
-
Recent advances in iron oxide nanocrystal technology for medical imaging
-
Corot C, Robert P, Idee JM, Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev. 2006; 58: 1471-504. doi:10.1016/j.addr.2006.09.013.
-
(2006)
Adv Drug Deliv Rev
, vol.58
, pp. 1471-1504
-
-
Corot, C.1
Robert, P.2
Idee, J.M.3
Port, M.4
-
5
-
-
59349104380
-
Imaging of inflammation in the peripheral and central nervous system by magnetic resonance imaging
-
Stoll G, Bendszus M. Imaging of inflammation in the peripheral and central nervous system by magnetic resonance imaging. Neuroscience. 2009; 158: 1151-60. doi:10.1016/j.neuroscience.2008.06.045.
-
(2009)
Neuroscience
, vol.158
, pp. 1151-1160
-
-
Stoll, G.1
Bendszus, M.2
-
6
-
-
39749086937
-
Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement
-
Vellinga MM, Oude Engberink RD, Seewann A, Pouwels PJ, Wattjes MP, van der Pol SM, et al. Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement. Brain: a journal of neurology. 2008; 131: 800-7. doi:10.1093/brain/awn009.
-
(2008)
Brain: a journal of neurology
, vol.131
, pp. 800-807
-
-
Vellinga, M.M.1
Oude Engberink, R.D.2
Seewann, A.3
Pouwels, P.J.4
Wattjes, M.P.5
van der Pol, S.M.6
-
7
-
-
84860916191
-
Development of manganese-based nanoparticles as contrast probes for magnetic resonance imaging
-
Zhen Z, Xie J. Development of manganese-based nanoparticles as contrast probes for magnetic resonance imaging. Theranostics. 2012; 2: 45-54. doi:10.7150/thno.3448.
-
(2012)
Theranostics
, vol.2
, pp. 45-54
-
-
Zhen, Z.1
Xie, J.2
-
8
-
-
46749142847
-
Magnetic nanoparticles in MR imaging and drug delivery
-
Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev. 2008; 60: 1252-65. doi:10.1016/j.addr.2008.03.018.
-
(2008)
Adv Drug Deliv Rev
, vol.60
, pp. 1252-1265
-
-
Sun, C.1
Lee, J.S.2
Zhang, M.3
-
9
-
-
1642341112
-
Increased viable osteoblast density in the presence of nanophase compared to conventional alumina and titania particles
-
Gutwein LG, Webster TJ. Increased viable osteoblast density in the presence of nanophase compared to conventional alumina and titania particles. Biomaterials. 2004; 25: 4175-83. doi:10.1016/j.biomaterials.2003.10.090.
-
(2004)
Biomaterials
, vol.25
, pp. 4175-4183
-
-
Gutwein, L.G.1
Webster, T.J.2
-
10
-
-
33750374618
-
Nanostructured Biomaterials for Tissue Engineering Bone
-
Lee K, Kaplan D, editors. Heidelberg: Springer Berlin
-
Webster T, Ahn E. Nanostructured Biomaterials for Tissue Engineering Bone. In: Lee K, Kaplan D, editors. Tissue Engineering II. Heidelberg: Springer Berlin. 2007: 275-308.
-
(2007)
Tissue Engineering II
, pp. 275-308
-
-
Webster, T.1
Ahn, E.2
-
11
-
-
81955162966
-
Nanotechnology: emerging tool for diagnostics and therapeutics
-
Chakraborty M, Jain S, Rani V. Nanotechnology: emerging tool for diagnostics and therapeutics. Applied biochemistry and biotechnology. 2011; 165: 1178-87. doi:10.1007/s12010-011-9336-6.
-
(2011)
Applied biochemistry and biotechnology
, vol.165
, pp. 1178-1187
-
-
Chakraborty, M.1
Jain, S.2
Rani, V.3
-
12
-
-
78650843970
-
Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: what should be the policy?
-
Kateb B, Chiu K, Black KL, Yamamoto V, Khalsa B, Ljubimova JY, et al. Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: what should be the policy? NeuroImage. 2011; 54 Suppl 1: S106-24. doi:10.1016/j.neuroimage.2010.01.105.
-
(2011)
NeuroImage
, vol.54
, pp. S106-S124
-
-
Kateb, B.1
Chiu, K.2
Black, K.L.3
Yamamoto, V.4
Khalsa, B.5
Ljubimova, J.Y.6
-
13
-
-
77951246386
-
Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging
-
Bhaskar S, Tian F, Stoeger T, Kreyling W, de la Fuente JM, Grazu V, et al. Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging. Particle and fibre toxicology. 2010; 7: 3. doi:10.1186/1743-8977-7-3.
-
(2010)
Particle and fibre toxicology
, vol.7
, pp. 3
-
-
Bhaskar, S.1
Tian, F.2
Stoeger, T.3
Kreyling, W.4
de la Fuente, J.M.5
Grazu, V.6
-
14
-
-
81255179346
-
Nanoparticles in gene therapy principles, prospects, and challenges
-
Liu C, Zhang N. Nanoparticles in gene therapy principles, prospects, and challenges. Progress in molecular biology and translational science. 2011; 104: 509-62. doi:10.1016/B978-0-12-416020-0.00013-9.
-
(2011)
Progress in molecular biology and translational science
, vol.104
, pp. 509-562
-
-
Liu, C.1
Zhang, N.2
-
15
-
-
84855824016
-
Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging
-
Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine-Uk. 2012; 8: 147-66. doi:10.1016/j.nano.2011.05.016.
-
(2012)
Nanomedicine-Uk
, vol.8
, pp. 147-166
-
-
Parveen, S.1
Misra, R.2
Sahoo, S.K.3
-
16
-
-
79955579188
-
Nanoparticle preconditioning for enhanced thermal therapies in cancer
-
Shenoi MM, Shah NB, Griffin RJ, Vercellotti GM, Bischof JC. Nanoparticle preconditioning for enhanced thermal therapies in cancer. Nanomedicine (Lond). 2011; 6: 545-63. doi:10.2217/nnm.10.153.
-
(2011)
Nanomedicine (Lond)
, vol.6
, pp. 545-563
-
-
Shenoi, M.M.1
Shah, N.B.2
Griffin, R.J.3
Vercellotti, G.M.4
Bischof, J.C.5
-
17
-
-
0032659957
-
Intracellular hyperthermia for cancer using magnetite cationic liposomes
-
Shinkai M, Yanase M, Suzuki M, Hiroyuki H, Wakabayashi T, Yoshida J, et al. Intracellular hyperthermia for cancer using magnetite cationic liposomes. Journal of Magnetism and Magnetic Materials. 1999; 194: 176-84. doi:10.1016/S0304-8853(98)00586-1.
-
(1999)
Journal of Magnetism and Magnetic Materials
, vol.194
, pp. 176-184
-
-
Shinkai, M.1
Yanase, M.2
Suzuki, M.3
Hiroyuki, H.4
Wakabayashi, T.5
Yoshida, J.6
-
18
-
-
79955571364
-
Synthesis and Characterization of Multifunctional Chitosan-MnFe2O4 Nanoparticles for Magnetic Hyperthermia and Drug Delivery
-
Kim DH, Nikles DE, Brazel CS. Synthesis and Characterization of Multifunctional Chitosan-MnFe2O4 Nanoparticles for Magnetic Hyperthermia and Drug Delivery. Materials. 2010; 3: 4051-65. doi:10.3390/ma3074051.
-
(2010)
Materials
, vol.3
, pp. 4051-4065
-
-
Kim, D.H.1
Nikles, D.E.2
Brazel, C.S.3
-
19
-
-
84888205371
-
Can nanomedicines kill cancer stem cells?
-
Zhao Y, Alakhova DY, Kabanov AV. Can nanomedicines kill cancer stem cells? Adv Drug Deliv Rev. 2013; 65: 1763-83. doi:10.1016/j.addr.2013.09.016.
-
(2013)
Adv Drug Deliv Rev
, vol.65
, pp. 1763-1783
-
-
Zhao, Y.1
Alakhova, D.Y.2
Kabanov, A.V.3
-
20
-
-
84875797745
-
Effective elimination of cancer stem cells by magnetic hyperthermia
-
Sadhukha T, Niu L, Wiedmann TS, Panyam J. Effective elimination of cancer stem cells by magnetic hyperthermia. Molecular pharmaceutics. 2013; 10: 1432-41. doi:10.1021/mp400015b.
-
(2013)
Molecular pharmaceutics
, vol.10
, pp. 1432-1441
-
-
Sadhukha, T.1
Niu, L.2
Wiedmann, T.S.3
Panyam, J.4
-
21
-
-
84896496412
-
Anti-ABCG2 monoclonal antibody in combination with paclitaxel nanoparticles against cancer stem-like cell activity in multiple myeloma
-
Yang C, Xiong F, Wang J, Dou J, Chen J, Chen D, et al. Anti-ABCG2 monoclonal antibody in combination with paclitaxel nanoparticles against cancer stem-like cell activity in multiple myeloma. Nanomedicine (Lond). 2014; 9: 45-60. doi:10.2217/nnm.12.216.
-
(2014)
Nanomedicine (Lond)
, vol.9
, pp. 45-60
-
-
Yang, C.1
Xiong, F.2
Wang, J.3
Dou, J.4
Chen, J.5
Chen, D.6
-
22
-
-
84987638434
-
Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine
-
Conde J, Dias JT, Grazu V, Moros M, Baptista PV, de la Fuente JM. Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front Chem. 2014; 2: 48. doi:10.3389/fchem.2014.00048.
-
(2014)
Front Chem
, vol.2
, pp. 48
-
-
Conde, J.1
Dias, J.T.2
Grazu, V.3
Moros, M.4
Baptista, P.V.5
de la Fuente, J.M.6
-
23
-
-
80054769977
-
Surface engineering of iron oxide nanoparticles for targeted cancer therapy
-
Kievit FM, Zhang M. Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc Chem Res. 2011; 44: 853-62. doi:10.1021/ar2000277.
-
(2011)
Acc Chem Res
, vol.44
, pp. 853-862
-
-
Kievit, F.M.1
Zhang, M.2
-
24
-
-
84862667715
-
Magnetic nanoparticles for cancer diagnosis and therapy
-
Yigit MV, Moore A, Medarova Z. Magnetic nanoparticles for cancer diagnosis and therapy. Pharmaceutical research. 2012; 29: 1180-8. doi:10.1007/s11095-012-0679-7.
-
(2012)
Pharmaceutical research
, vol.29
, pp. 1180-1188
-
-
Yigit, M.V.1
Moore, A.2
Medarova, Z.3
-
25
-
-
85015870128
-
Multilayered Nanoparticles for Personalized Medicine: Translation into Clinical Markets
-
Pan Stanford Publishing Pte Ltd
-
Movia D, Poland C, Tran L, Volkov Y, Prina-Mello A. Multilayered Nanoparticles for Personalized Medicine: Translation into Clinical Markets. In: Handbook of Clinical Nanomedicine: Nanoparticles, Imaging, Therapy and Clinical Applications Singapore: Pan Stanford Publishing Pte Ltd; 2016.
-
(2016)
Handbook of Clinical Nanomedicine: Nanoparticles, Imaging, Therapy and Clinical Applications Singapore
-
-
Movia, D.1
Poland, C.2
Tran, L.3
Volkov, Y.4
Prina-Mello, A.5
-
26
-
-
75149193039
-
Multifunctional magnetic nanoparticles for targeted delivery
-
Kumar A, Jena PK, Behera S, Lockey RF, Mohapatra S, Mohapatra S. Multifunctional magnetic nanoparticles for targeted delivery. Nanomedicine-Uk. 2010; 6: 64-9. doi:10.1016/j.nano.2009.04.002.
-
(2010)
Nanomedicine-Uk
, vol.6
, pp. 64-69
-
-
Kumar, A.1
Jena, P.K.2
Behera, S.3
Lockey, R.F.4
Mohapatra, S.5
Mohapatra, S.6
-
27
-
-
84870429733
-
Controlled synthesis of uniform magnetite nanocrystals with high-quality properties for biomedical applications
-
Salas G, Casado C, Teran FJ, Miranda R, Serna CJ, Morales MP. Controlled synthesis of uniform magnetite nanocrystals with high-quality properties for biomedical applications. J Mater Chem. 2012; 22: 21065-75. doi:10.1039/C2JM34402E.
-
(2012)
J Mater Chem
, vol.22
, pp. 21065-21075
-
-
Salas, G.1
Casado, C.2
Teran, F.J.3
Miranda, R.4
Serna, C.J.5
Morales, M.P.6
-
28
-
-
85027989928
-
Ocampo, Alberto Gonzalez-Garciá, Pierre Couleaud, Rodolfo Miranda, Cristobal Belda-Iniesta and Angel Ayuso-Sacido. Engineering Iron Oxide Nanoparticles for Clinical Settings
-
10.5772/58841
-
Aitziber L. Cortajarena DO, Sandra M. Ocampo, Alberto Gonzalez-Garciá, Pierre Couleaud, Rodolfo Miranda, Cristobal Belda-Iniesta and Angel Ayuso-Sacido. Engineering Iron Oxide Nanoparticles for Clinical Settings. Nanobiomedicine. 2014; 1:2. doi: 10.5772/58841.
-
(2014)
Nanobiomedicine
, vol.1
, pp. 2
-
-
Aitziber, L.1
Cortajarena, D.O.2
Sandra, M.3
-
29
-
-
84912551732
-
Magnetic nanoparticles coated with dimercaptosuccinic acid: development, characterization, and application in biomedicine
-
Ruiz A, Morais P, Bentes de Azevedo R, Lacava ZM, Villanueva A, del Puerto Morales M. Magnetic nanoparticles coated with dimercaptosuccinic acid: development, characterization, and application in biomedicine. J Nanopart Res. 2014; 16: 1-20. doi:10.1007/s11051-014-2589-6.
-
(2014)
J Nanopart Res
, vol.16
, pp. 1-20
-
-
Ruiz, A.1
Morais, P.2
Bentes de Azevedo, R.3
Lacava, Z.M.4
Villanueva, A.5
del Puerto Morales, M.6
-
30
-
-
84887050295
-
Large scale production of biocompatible magnetite nanocrystals with high saturation magnetization values through green aqueous synthesis
-
Marciello M, Connord V, Veintemillas-Verdaguer S, Verges MA, Carrey J, Respaud M, et al. Large scale production of biocompatible magnetite nanocrystals with high saturation magnetization values through green aqueous synthesis. Journal of Materials Chemistry B. 2013; 1: 5995-6004. doi:10.1039/C3TB20949K.
-
(2013)
Journal of Materials Chemistry B
, vol.1
, pp. 5995-6004
-
-
Marciello, M.1
Connord, V.2
Veintemillas-Verdaguer, S.3
Verges, M.A.4
Carrey, J.5
Respaud, M.6
-
31
-
-
84931830692
-
Biodistribution and pharmacokinetic studies of SPION using particle electron paramagnetic resonance, MRI and ICP-MS
-
Gobbo OL, Wetterling F, Vaes P, Teughels S, Markos F, Edge D, et al. Biodistribution and pharmacokinetic studies of SPION using particle electron paramagnetic resonance, MRI and ICP-MS. Nanomedicine-Uk. 2015; 10: 1751-60. doi:10.2217/nnm.15.22.
-
(2015)
Nanomedicine-Uk
, vol.10
, pp. 1751-1760
-
-
Gobbo, O.L.1
Wetterling, F.2
Vaes, P.3
Teughels, S.4
Markos, F.5
Edge, D.6
-
32
-
-
84866656031
-
Iron oxide-based nanostructures for MRI and magnetic hyperthermia
-
Hilger I, Kaiser WA. Iron oxide-based nanostructures for MRI and magnetic hyperthermia. Nanomedicine-Uk. 2012; 7: 1443-59. doi:10.2217/nnm.12.112.
-
(2012)
Nanomedicine-Uk
, vol.7
, pp. 1443-1459
-
-
Hilger, I.1
Kaiser, W.A.2
-
33
-
-
84866144627
-
Biocompatibility and Toxicity of Magnetic Nanoparticles in Regenerative Medicine
-
Markides H, Rotherham M, El Haj AJ. Biocompatibility and Toxicity of Magnetic Nanoparticles in Regenerative Medicine. J Nanomater. 2012; 2012: 11. doi:10.1155/2012/614094.
-
(2012)
J Nanomater
, vol.2012
, pp. 11
-
-
Markides, H.1
Rotherham, M.2
El Haj, A.J.3
-
34
-
-
84900324596
-
Efficient and safe internalization of magnetic iron oxide nanoparticles: Two fundamental requirements for biomedical applications
-
Calero M, Gutiérrez L, Salas G, Luengo Y, Lázaro A, Acedo P, et al. Efficient and safe internalization of magnetic iron oxide nanoparticles: Two fundamental requirements for biomedical applications. Nanomedicine: Nanotechnology, Biology and Medicine. 2014; 10: 733-43. doi:http://dx.doi.org/10.1016/j.nano.2013.11.010.
-
(2014)
Nanomedicine: Nanotechnology, Biology and Medicine
, vol.10
, pp. 733-743
-
-
Calero, M.1
Gutiérrez, L.2
Salas, G.3
Luengo, Y.4
Lázaro, A.5
Acedo, P.6
-
35
-
-
84887419715
-
Biodistribution and pharmacokinetics of uniform magnetite nanoparticles chemically modified with polyethylene glycol
-
Ruiz A, Hernandez Y, Cabal C, Gonzalez E, Veintemillas-Verdaguer S, Martinez E, et al. Biodistribution and pharmacokinetics of uniform magnetite nanoparticles chemically modified with polyethylene glycol. Nanoscale. 2013; 5: 11400-8. doi:10.1039/C3NR01412F.
-
(2013)
Nanoscale
, vol.5
, pp. 11400-11408
-
-
Ruiz, A.1
Hernandez, Y.2
Cabal, C.3
Gonzalez, E.4
Veintemillas-Verdaguer, S.5
Martinez, E.6
-
36
-
-
84902345377
-
Multifunctionalization of magnetic nanoparticles for controlled drug release: A general approach
-
Latorre A, Couleaud P, Aires A, Cortajarena AL, Somoza Á. Multifunctionalization of magnetic nanoparticles for controlled drug release: A general approach. European Journal of Medicinal Chemistry. 2014; 82: 355-62. doi:10.1016/j.ejmech.2014.05.078.
-
(2014)
European Journal of Medicinal Chemistry
, vol.82
, pp. 355-362
-
-
Latorre, A.1
Couleaud, P.2
Aires, A.3
Cortajarena, A.L.4
Somoza, Á.5
-
37
-
-
84904902437
-
Development of Magnetic Nanoparticles for Cancer Gene Therapy: A Comprehensive Review
-
Mulens V, Morales MdP, Barber DF. Development of Magnetic Nanoparticles for Cancer Gene Therapy: A Comprehensive Review. ISRN Nanomaterials. 2013; 1: 1-14. doi:10.1155/2013/646284.
-
(2013)
ISRN Nanomaterials
, vol.1
, pp. 1-14
-
-
Mulens, V.1
Morales, M.P.2
Barber, D.F.3
-
38
-
-
73449137187
-
Antibody-Conjugated Nanoparticles for Biomedical Applications
-
Arruebo M, Valladares M, Gonzalez-Fernandez A. Antibody-Conjugated Nanoparticles for Biomedical Applications. J Nanomater. 2009; 1: 1-24. doi:10.1155/2009/439389.
-
(2009)
J Nanomater
, vol.1
, pp. 1-24
-
-
Arruebo, M.1
Valladares, M.2
Gonzalez-Fernandez, A.3
-
39
-
-
49449117054
-
Suppression of Tumor Growth and Angiogenesis by a Specific Antagonist of the Cell-Surface Expressed Nucleolin
-
Destouches D, El Khoury D, Hamma-Kourbali Y, Krust B, Albanese P, Katsoris P, et al. Suppression of Tumor Growth and Angiogenesis by a Specific Antagonist of the Cell-Surface Expressed Nucleolin. PloS one. 2008; 3: e2518. doi:10.1371/journal.pone.0002518.
-
(2008)
PloS one
, vol.3
-
-
Destouches, D.1
El Khoury, D.2
Hamma-Kourbali, Y.3
Krust, B.4
Albanese, P.5
Katsoris, P.6
-
40
-
-
84866924189
-
The Nanomedicine Revolution: Part 1: Emerging Concepts
-
Ventola CL. The Nanomedicine Revolution: Part 1: Emerging Concepts. Pharmacy and Therapeutics. 2012; 37: 512-25.
-
(2012)
Pharmacy and Therapeutics
, vol.37
, pp. 512-525
-
-
Ventola, C.L.1
-
41
-
-
84954296976
-
-
Lyon, France. World Cancer Report
-
[Internet] WHO/IARC: Lyon, France. World Cancer Report 2008. http://www.iarc.fr/en/publications/pdfs-online/wcr/2008/wcr_2008.pdf.
-
(2008)
-
-
-
42
-
-
33744487875
-
Molecular imaging in cancer
-
Weissleder R. Molecular imaging in cancer. Science. 2006; 312: 1168-71. doi:10.1126/science.1125949.
-
(2006)
Science
, vol.312
, pp. 1168-1171
-
-
Weissleder, R.1
-
44
-
-
84855742399
-
Mechanisms underlying toxicity induced by CdTe quantum dots determined in an invertebrate model organism
-
Ambrosone A, Mattera L, Marchesano V, Quarta A, Susha AS, Tino A, et al. Mechanisms underlying toxicity induced by CdTe quantum dots determined in an invertebrate model organism. Biomaterials. 2012; 33: 1991-2000. doi:10.1016/j.biomaterials.2011.11.041.
-
(2012)
Biomaterials
, vol.33
, pp. 1991-2000
-
-
Ambrosone, A.1
Mattera, L.2
Marchesano, V.3
Quarta, A.4
Susha, A.S.5
Tino, A.6
-
45
-
-
84866435975
-
Manganese: a new contrast agent for lung imaging?
-
Gobbo OL, Zurek M, Tewes F, Ehrhardt C, Cremillieux Y. Manganese: a new contrast agent for lung imaging? Contrast media & molecular imaging. 2012; 7: 542-6. doi:10.1002/cmmi.1483.
-
(2012)
Contrast media & molecular imaging
, vol.7
, pp. 542-546
-
-
Gobbo, O.L.1
Zurek, M.2
Tewes, F.3
Ehrhardt, C.4
Cremillieux, Y.5
-
46
-
-
81855220356
-
The developmental history of the gadolinium chelates as intravenous contrast media for magnetic resonance
-
Runge VM, Ai T, Hao D, Hu X. The developmental history of the gadolinium chelates as intravenous contrast media for magnetic resonance. Investigative radiology. 2011; 46: 807-16. doi:10.1097/RLI.0b013e318237913b.
-
(2011)
Investigative radiology
, vol.46
, pp. 807-816
-
-
Runge, V.M.1
Ai, T.2
Hao, D.3
Hu, X.4
-
47
-
-
79953201487
-
Advances in bio-imaging: a survey from WWMR 2010
-
Aime S, Reineri F. Advances in bio-imaging: a survey from WWMR 2010. Journal of magnetic resonance. 2011; 209: 109-15. doi:10.1016/j.jmr.2011.02.021.
-
(2011)
Journal of magnetic resonance
, vol.209
, pp. 109-115
-
-
Aime, S.1
Reineri, F.2
-
49
-
-
84862658644
-
Magnetic nanoparticles in magnetic resonance imaging and diagnostics
-
Rumenapp C, Gleich B, Haase A. Magnetic nanoparticles in magnetic resonance imaging and diagnostics. Pharmaceutical research. 2012; 29: 1165-79. doi:10.1007/s11095-012-0711-y.
-
(2012)
Pharmaceutical research
, vol.29
, pp. 1165-1179
-
-
Rumenapp, C.1
Gleich, B.2
Haase, A.3
-
50
-
-
67649264901
-
Inorganic Nanoparticles for MRI Contrast Agents
-
Na HB, Song IC, Hyeon T. Inorganic Nanoparticles for MRI Contrast Agents. Advanced Materials. 2009; 21: 2133-48. doi:10.1002/adma.200802366.
-
(2009)
Advanced Materials
, vol.21
, pp. 2133-2148
-
-
Na, H.B.1
Song, I.C.2
Hyeon, T.3
-
51
-
-
78549286638
-
PEG-functionalized magnetic nanoparticles for drug delivery and magnetic resonance imaging applications
-
Yallapu MM, Foy SP, Jain TK, Labhasetwar V. PEG-functionalized magnetic nanoparticles for drug delivery and magnetic resonance imaging applications. Pharmaceutical research. 2010; 27: 2283-95. doi:10.1007/s11095-010-0260-1.
-
(2010)
Pharmaceutical research
, vol.27
, pp. 2283-2295
-
-
Yallapu, M.M.1
Foy, S.P.2
Jain, T.K.3
Labhasetwar, V.4
-
52
-
-
84882252518
-
Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment
-
Hayashi K, Nakamura M, Sakamoto W, Yogo T, Miki H, Ozaki S, et al. Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment. Theranostics. 2013; 3: 366-76. doi:10.7150/thno.5860.
-
(2013)
Theranostics
, vol.3
, pp. 366-376
-
-
Hayashi, K.1
Nakamura, M.2
Sakamoto, W.3
Yogo, T.4
Miki, H.5
Ozaki, S.6
-
53
-
-
84863961365
-
Magnetic nanoparticle-based hyperthermia for head & neck cancer in mouse models
-
Zhao Q, Wang L, Cheng R, Mao L, Arnold RD, Howerth EW, et al. Magnetic nanoparticle-based hyperthermia for head & neck cancer in mouse models. Theranostics. 2012; 2: 113-21. doi:10.7150/thno.3854.
-
(2012)
Theranostics
, vol.2
, pp. 113-121
-
-
Zhao, Q.1
Wang, L.2
Cheng, R.3
Mao, L.4
Arnold, R.D.5
Howerth, E.W.6
-
54
-
-
36849067019
-
Nanocarriers as an emerging platform for cancer therapy
-
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nature nanotechnology. 2007; 2: 751-60. doi:10.1038/nnano.2007.387.
-
(2007)
Nature nanotechnology
, vol.2
, pp. 751-760
-
-
Peer, D.1
Karp, J.M.2
Hong, S.3
Farokhzad, O.C.4
Margalit, R.5
Langer, R.6
-
56
-
-
84862325100
-
Nanomedicine: towards development of patient-friendly drug-delivery systems for oncological applications
-
Ranganathan R, Madanmohan S, Kesavan A, Baskar G, Krishnamoorthy YR, Santosham R, et al. Nanomedicine: towards development of patient-friendly drug-delivery systems for oncological applications. International journal of nanomedicine. 2012; 7: 1043-60. doi:10.2147/IJN.S25182.
-
(2012)
International journal of nanomedicine
, vol.7
, pp. 1043-1060
-
-
Ranganathan, R.1
Madanmohan, S.2
Kesavan, A.3
Baskar, G.4
Krishnamoorthy, Y.R.5
Santosham, R.6
-
57
-
-
84870415226
-
Targeted delivery of transferrin-conjugated liposomes to an orthotopic model of lung cancer in nude rats
-
Gaspar MM, Radomska A, Gobbo OL, Bakowsky U, Radomski MW, Ehrhardt C. Targeted delivery of transferrin-conjugated liposomes to an orthotopic model of lung cancer in nude rats. Journal of aerosol medicine and pulmonary drug delivery. 2012; 25: 310-8. doi:10.1089/jamp.2011.0928.
-
(2012)
Journal of aerosol medicine and pulmonary drug delivery
, vol.25
, pp. 310-318
-
-
Gaspar, M.M.1
Radomska, A.2
Gobbo, O.L.3
Bakowsky, U.4
Radomski, M.W.5
Ehrhardt, C.6
-
58
-
-
80052159477
-
Magnetic Biotransport: Analysis and Applications
-
Furlani EP. Magnetic Biotransport: Analysis and Applications. Materials. 2010; 3: 2412-46. doi:10.3390/ma3042412.
-
(2010)
Materials
, vol.3
, pp. 2412-2446
-
-
Furlani, E.P.1
-
59
-
-
79251632057
-
Biological properties of iron oxide nanoparticles for cellular and molecular magnetic resonance imaging
-
Schlorf T, Meincke M, Kossel E, Gluer CC, Jansen O, Mentlein R. Biological properties of iron oxide nanoparticles for cellular and molecular magnetic resonance imaging. International journal of molecular sciences. 2010; 12: 12-23. doi:10.3390/ijms12010012.
-
(2010)
International journal of molecular sciences
, vol.12
, pp. 12-23
-
-
Schlorf, T.1
Meincke, M.2
Kossel, E.3
Gluer, C.C.4
Jansen, O.5
Mentlein, R.6
-
60
-
-
44949257308
-
Longitudinal 3He and proton imaging of magnetite biodistribution in a rat model of instilled nanoparticles
-
Al Faraj A, Lacroix G, Alsaid H, Elgrabi D, Stupar V, Robidel F, et al. Longitudinal 3He and proton imaging of magnetite biodistribution in a rat model of instilled nanoparticles. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine. 2008; 59: 1298-303. doi:10.1002/mrm.21571.
-
(2008)
Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine
, vol.59
, pp. 1298-1303
-
-
Al Faraj, A.1
Lacroix, G.2
Alsaid, H.3
Elgrabi, D.4
Stupar, V.5
Robidel, F.6
-
61
-
-
77954694221
-
Long-term follow-up of lung biodistribution and effect of instilled SWCNTs using multiscale imaging techniques
-
Al Faraj A, Bessaad A, Cieslar K, Lacroix G, Canet-Soulas E, Cremillieux Y. Long-term follow-up of lung biodistribution and effect of instilled SWCNTs using multiscale imaging techniques. Nanotechnology. 2010; 21: 175103. doi:10.1088/0957-4484/21/17/175103.
-
(2010)
Nanotechnology
, vol.21
-
-
Al Faraj, A.1
Bessaad, A.2
Cieslar, K.3
Lacroix, G.4
Canet-Soulas, E.5
Cremillieux, Y.6
-
62
-
-
20144389123
-
Increase of doxorubicin sensitivity by doxorubicin-loading into nanoparticles for hepatocellular carcinoma cells in vitro and in vivo
-
Barraud L, Merle P, Soma E, Lefrancois L, Guerret S, Chevallier M, et al. Increase of doxorubicin sensitivity by doxorubicin-loading into nanoparticles for hepatocellular carcinoma cells in vitro and in vivo. Journal of hepatology. 2005; 42: 736-43. doi:10.1016/j.jhep.2004.12.035.
-
(2005)
Journal of hepatology
, vol.42
, pp. 736-743
-
-
Barraud, L.1
Merle, P.2
Soma, E.3
Lefrancois, L.4
Guerret, S.5
Chevallier, M.6
-
63
-
-
77955113615
-
Targeted gene silencing using RGD-labeled chitosan nanoparticles
-
Han HD, Mangala LS, Lee JW, Shahzad MM, Kim HS, Shen D, et al. Targeted gene silencing using RGD-labeled chitosan nanoparticles. Clinical cancer research: an official journal of the American Association for Cancer Research. 2010; 16: 3910-22. doi:10.1158/1078-0432.CCR-10-0005.
-
(2010)
Clinical cancer research: an official journal of the American Association for Cancer Research
, vol.16
, pp. 3910-3922
-
-
Han, H.D.1
Mangala, L.S.2
Lee, J.W.3
Shahzad, M.M.4
Kim, H.S.5
Shen, D.6
-
64
-
-
77956638462
-
Enhanced antiproliferative activity of carboplatin-loaded chitosan-alginate nanoparticles in a retinoblastoma cell line
-
Parveen S, Mitra M, Krishnakumar S, Sahoo SK. Enhanced antiproliferative activity of carboplatin-loaded chitosan-alginate nanoparticles in a retinoblastoma cell line. Acta biomaterialia. 2010; 6: 3120-31. doi:10.1016/j.actbio.2010.02.010.
-
(2010)
Acta biomaterialia
, vol.6
, pp. 3120-3131
-
-
Parveen, S.1
Mitra, M.2
Krishnakumar, S.3
Sahoo, S.K.4
-
65
-
-
77951976128
-
Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer
-
Maeng JH, Lee DH, Jung KH, Bae YH, Park IS, Jeong S, et al. Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials. 2010; 31: 4995-5006. doi:10.1016/j.biomaterials.2010.02.068.
-
(2010)
Biomaterials
, vol.31
, pp. 4995-5006
-
-
Maeng, J.H.1
Lee, D.H.2
Jung, K.H.3
Bae, Y.H.4
Park, I.S.5
Jeong, S.6
-
66
-
-
84860277486
-
Magnetic field-assisted gene delivery: achievements and therapeutic potential
-
Schwerdt JI, Goya GF, Calatayud MP, Herenu CB, Reggiani PC, Goya RG. Magnetic field-assisted gene delivery: achievements and therapeutic potential. Current gene therapy. 2012; 12: 116-26. doi:10.2174/156652312800099616.
-
(2012)
Current gene therapy
, vol.12
, pp. 116-126
-
-
Schwerdt, J.I.1
Goya, G.F.2
Calatayud, M.P.3
Herenu, C.B.4
Reggiani, P.C.5
Goya, R.G.6
-
67
-
-
84867161206
-
Targeting cancer gene therapy with magnetic nanoparticles
-
Li C, Li L, Keates AC. Targeting cancer gene therapy with magnetic nanoparticles. Oncotarget. 2012; 3: 365-70.
-
(2012)
Oncotarget
, vol.3
, pp. 365-370
-
-
Li, C.1
Li, L.2
Keates, A.C.3
-
68
-
-
40049094624
-
Nanocryosurgery and its mechanisms for enhancing freezing efficiency of tumor tissues
-
Yan JF, Liu J. Nanocryosurgery and its mechanisms for enhancing freezing efficiency of tumor tissues. Nanomedicine-Uk. 2008; 4: 79-87. doi:10.1016/j.nano.2007.11.002.
-
(2008)
Nanomedicine-Uk
, vol.4
, pp. 79-87
-
-
Yan, J.F.1
Liu, J.2
-
69
-
-
7944228419
-
Enhancement of the immune response to residual intrahepatic tumor tissue by laser-induced thermotherapy (LITT) compared to hepatic resection
-
Isbert C, Ritz JP, Roggan A, Schuppan D, Ruhl M, Buhr HJ, et al. Enhancement of the immune response to residual intrahepatic tumor tissue by laser-induced thermotherapy (LITT) compared to hepatic resection. Lasers in surgery and medicine. 2004; 35: 284-92. doi:10.1002/lsm.20097.
-
(2004)
Lasers in surgery and medicine
, vol.35
, pp. 284-292
-
-
Isbert, C.1
Ritz, J.P.2
Roggan, A.3
Schuppan, D.4
Ruhl, M.5
Buhr, H.J.6
-
70
-
-
78650231477
-
Gold nanorods as new nanochromophores for photothermal therapies
-
Ratto F, Matteini P, Centi S, Rossi F, Pini R. Gold nanorods as new nanochromophores for photothermal therapies. Journal of biophotonics. 2011; 4: 64-73. doi:10.1002/jbio.201000002.
-
(2011)
Journal of biophotonics
, vol.4
, pp. 64-73
-
-
Ratto, F.1
Matteini, P.2
Centi, S.3
Rossi, F.4
Pini, R.5
-
71
-
-
1642601566
-
High-intensity focused ultrasound for the treatment of liver tumours
-
Kennedy JE, Wu F, ter Haar GR, Gleeson FV, Phillips RR, Middleton MR, et al. High-intensity focused ultrasound for the treatment of liver tumours. Ultrasonics. 2004; 42: 931-5. doi:10.1016/j.ultras.2004.01.089.
-
(2004)
Ultrasonics
, vol.42
, pp. 931-935
-
-
Kennedy, J.E.1
Wu, F.2
ter Haar, G.R.3
Gleeson, F.V.4
Phillips, R.R.5
Middleton, M.R.6
-
72
-
-
84866853430
-
Therapeutic effect of high-intensity focused ultrasound combined with transarterial chemoembolisation for hepatocellular carcinoma < 5 cm: comparison with transarterial chemoembolisation monotherapy-preliminary observations
-
Kim J, Chung DJ, Jung SE, Cho SH, Hahn ST, Lee JM. Therapeutic effect of high-intensity focused ultrasound combined with transarterial chemoembolisation for hepatocellular carcinoma < 5 cm: comparison with transarterial chemoembolisation monotherapy-preliminary observations. The British journal of radiology. 2012; 85: 940-6. doi:10.1259/bjr/32750755.
-
(2012)
The British journal of radiology
, vol.85
, pp. 940-946
-
-
Kim, J.1
Chung, D.J.2
Jung, S.E.3
Cho, S.H.4
Hahn, S.T.5
Lee, J.M.6
-
73
-
-
2942724313
-
Large liver tumors: protocol for radiofrequency ablation and its clinical application in 110 patients-mathematic model, overlapping mode, and electrode placement process
-
Chen MH, Yang W, Yan K, Zou MW, Solbiati L, Liu JB, et al. Large liver tumors: protocol for radiofrequency ablation and its clinical application in 110 patients-mathematic model, overlapping mode, and electrode placement process. Radiology. 2004; 232: 260-71. doi:10.1148/radiol.2321030821.
-
(2004)
Radiology
, vol.232
, pp. 260-271
-
-
Chen, M.H.1
Yang, W.2
Yan, K.3
Zou, M.W.4
Solbiati, L.5
Liu, J.B.6
-
74
-
-
84860231101
-
Radiofrequency ablation in the management of unresectable intrahepatic cholangiocarcinoma
-
Fu Y, Yang W, Wu W, Yan K, Xing BC, Chen MH. Radiofrequency ablation in the management of unresectable intrahepatic cholangiocarcinoma. Journal of vascular and interventional radiology: JVIR. 2012; 23: 642-9. doi:10.1016/j.jvir.2012.01.081.
-
(2012)
Journal of vascular and interventional radiology: JVIR
, vol.23
, pp. 642-649
-
-
Fu, Y.1
Yang, W.2
Wu, W.3
Yan, K.4
Xing, B.C.5
Chen, M.H.6
-
75
-
-
16244406244
-
Use of magnetic nanoparticle heating in the treatment of breast cancer
-
Hilger I, Hergt R, Kaiser WA. Use of magnetic nanoparticle heating in the treatment of breast cancer. IEE proceedings Nanobiotechnology. 2005; 152: 33-9. doi:10.1049/ip-nbt:20055018.
-
(2005)
IEE proceedings Nanobiotechnology
, vol.152
, pp. 33-39
-
-
Hilger, I.1
Hergt, R.2
Kaiser, W.A.3
-
76
-
-
82455206257
-
Minimal-invasive magnetic heating of tumors does not alter intra-tumoral nanoparticle accumulation, allowing for repeated therapy sessions: an in vivo study in mice
-
Kettering M, Richter H, Wiekhorst F, Bremer-Streck S, Trahms L, Kaiser WA, et al. Minimal-invasive magnetic heating of tumors does not alter intra-tumoral nanoparticle accumulation, allowing for repeated therapy sessions: an in vivo study in mice. Nanotechnology. 2011; 22: 505102. doi:10.1088/0957-4484/22/50/505102.
-
(2011)
Nanotechnology
, vol.22
-
-
Kettering, M.1
Richter, H.2
Wiekhorst, F.3
Bremer-Streck, S.4
Trahms, L.5
Kaiser, W.A.6
-
77
-
-
84880446225
-
Intravenous magnetic nanoparticle cancer hyperthermia
-
Huang HS, Hainfeld JF. Intravenous magnetic nanoparticle cancer hyperthermia. International journal of nanomedicine. 2013; 8: 2521-32. doi:10.2147/IJN.S43770.
-
(2013)
International journal of nanomedicine
, vol.8
, pp. 2521-2532
-
-
Huang, H.S.1
Hainfeld, J.F.2
-
79
-
-
78349284397
-
Single-wall carbon nanotubes assisted photothermal cancer therapy: animal study with a murine model of squamous cell carcinoma
-
Huang N, Wang H, Zhao J, Lui H, Korbelik M, Zeng H. Single-wall carbon nanotubes assisted photothermal cancer therapy: animal study with a murine model of squamous cell carcinoma. Lasers in surgery and medicine. 2010; 42: 638-48. doi:10.1002/lsm.20968.
-
(2010)
Lasers in surgery and medicine
, vol.42
, pp. 638-648
-
-
Huang, N.1
Wang, H.2
Zhao, J.3
Lui, H.4
Korbelik, M.5
Zeng, H.6
-
80
-
-
84928137610
-
Graphene-based nanovehicles for photodynamic medical therapy
-
Li Y, Dong H, Li Y, Shi D. Graphene-based nanovehicles for photodynamic medical therapy. International journal of nanomedicine. 2015; 10: 2451-9. doi:10.2147/ijn.s68600.
-
(2015)
International journal of nanomedicine
, vol.10
, pp. 2451-2459
-
-
Li, Y.1
Dong, H.2
Li, Y.3
Shi, D.4
-
81
-
-
84969312377
-
-
[Internet] Magforce. www.magforce.de/fileadmin/magforce/5_presse/presentations/Company_presentation_May2013_English.pdf.
-
-
-
-
82
-
-
79959846524
-
Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme
-
Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. Journal of neuro-oncology. 2011; 103: 317-24. doi:10.1007/s11060-010-0389-0.
-
(2011)
Journal of neuro-oncology
, vol.103
, pp. 317-324
-
-
Maier-Hauff, K.1
Ulrich, F.2
Nestler, D.3
Niehoff, H.4
Wust, P.5
Thiesen, B.6
-
83
-
-
33646886334
-
The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma
-
Jordan A, Scholz R, Maier-Hauff K, van Landeghem FK, Waldoefner N, Teichgraeber U, et al. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. Journal of neuro-oncology. 2006; 78: 7-14. doi:10.1007/s11060-005-9059-z.
-
(2006)
Journal of neuro-oncology
, vol.78
, pp. 7-14
-
-
Jordan, A.1
Scholz, R.2
Maier-Hauff, K.3
van Landeghem, F.K.4
Waldoefner, N.5
Teichgraeber, U.6
-
84
-
-
34249858538
-
Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial
-
Johannsen M, Gneveckow U, Taymoorian K, Thiesen B, Waldofner N, Scholz R, et al. Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial. International journal of hyperthermia: the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group. 2007; 23: 315-23. doi:10.1080/02656730601175479.
-
(2007)
International journal of hyperthermia: the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group
, vol.23
, pp. 315-323
-
-
Johannsen, M.1
Gneveckow, U.2
Taymoorian, K.3
Thiesen, B.4
Waldofner, N.5
Scholz, R.6
-
85
-
-
76749093968
-
Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging
-
Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev. 2010; 62: 284-304. doi:10.1016/j.addr.2009.11.002.
-
(2010)
Adv Drug Deliv Rev
, vol.62
, pp. 284-304
-
-
Veiseh, O.1
Gunn, J.W.2
Zhang, M.3
-
86
-
-
77249104877
-
Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles
-
He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010; 31: 3657-66. doi:10.1016/j.biomaterials.2010.01.065.
-
(2010)
Biomaterials
, vol.31
, pp. 3657-3666
-
-
He, C.1
Hu, Y.2
Yin, L.3
Tang, C.4
Yin, C.5
-
87
-
-
34250691406
-
Delivery of superparamagnetic nanoparticles for local chemotherapy after intraarterial infusion and magnetic drug targeting
-
Alexiou C, Jurgons R, Seliger C, Brunke O, Iro H, Odenbach S. Delivery of superparamagnetic nanoparticles for local chemotherapy after intraarterial infusion and magnetic drug targeting. Anticancer research. 2007; 27: 2019-22.
-
(2007)
Anticancer research
, vol.27
, pp. 2019-2022
-
-
Alexiou, C.1
Jurgons, R.2
Seliger, C.3
Brunke, O.4
Iro, H.5
Odenbach, S.6
-
88
-
-
84857860947
-
Nanoparticles for cancer therapy using magnetic forces
-
Tietze R, Lyer S, Durr S, Alexiou C. Nanoparticles for cancer therapy using magnetic forces. Nanomedicine (Lond). 2012; 7: 447-57. doi:10.2217/nnm.12.10.
-
(2012)
Nanomedicine (Lond)
, vol.7
, pp. 447-457
-
-
Tietze, R.1
Lyer, S.2
Durr, S.3
Alexiou, C.4
-
90
-
-
34547672749
-
Targeted delivery of magnetic aerosol droplets to the lung
-
Dames P, Gleich B, Flemmer A, Hajek K, Seidl N, Wiekhorst F, et al. Targeted delivery of magnetic aerosol droplets to the lung. Nature nanotechnology. 2007; 2: 495-9. doi:10.1038/nnano.2007.217.
-
(2007)
Nature nanotechnology
, vol.2
, pp. 495-499
-
-
Dames, P.1
Gleich, B.2
Flemmer, A.3
Hajek, K.4
Seidl, N.5
Wiekhorst, F.6
-
91
-
-
79952649516
-
Antibody-targeted nanoparticles for cancer therapy
-
Fay F, Scott CJ. Antibody-targeted nanoparticles for cancer therapy. Immunotherapy. 2011; 3: 381-94. doi:10.2217/imt.11.5.
-
(2011)
Immunotherapy
, vol.3
, pp. 381-394
-
-
Fay, F.1
Scott, C.J.2
-
92
-
-
84863638984
-
Integrin-mediated drug delivery in cancer and cardiovascular diseases with peptide-functionalized nanoparticles
-
Arosio D, Casagrande C, Manzoni L. Integrin-mediated drug delivery in cancer and cardiovascular diseases with peptide-functionalized nanoparticles. Current medicinal chemistry. 2012; 19: 3128-51. doi:10.2174/092986712800784748.
-
(2012)
Current medicinal chemistry
, vol.19
, pp. 3128-3151
-
-
Arosio, D.1
Casagrande, C.2
Manzoni, L.3
-
93
-
-
79956128895
-
Chlorotoxin-modified macromolecular contrast agent for MRI tumor diagnosis
-
Huang R, Han L, Li J, Liu S, Shao K, Kuang Y, et al. Chlorotoxin-modified macromolecular contrast agent for MRI tumor diagnosis. Biomaterials. 2011; 32: 5177-86. doi:10.1016/j.biomaterials.2011.03.075.
-
(2011)
Biomaterials
, vol.32
, pp. 5177-5186
-
-
Huang, R.1
Han, L.2
Li, J.3
Liu, S.4
Shao, K.5
Kuang, Y.6
-
94
-
-
79955503446
-
A simple approach to cancer therapy afforded by multivalent pseudopeptides that target cell-surface nucleoproteins
-
Destouches D, Page N, Hamma-Kourbali Y, Machi V, Chaloin O, Frechault S, et al. A simple approach to cancer therapy afforded by multivalent pseudopeptides that target cell-surface nucleoproteins. Cancer research. 2011; 71: 3296-305. doi:10.1158/0008-5472.CAN-10-3459.
-
(2011)
Cancer research
, vol.71
, pp. 3296-3305
-
-
Destouches, D.1
Page, N.2
Hamma-Kourbali, Y.3
Machi, V.4
Chaloin, O.5
Frechault, S.6
-
95
-
-
84884274380
-
Mechanisms of nanoparticle-induced oxidative stress and toxicity
-
Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed research international. 2013; 1: 942916. doi:10.1155/2013/942916.
-
(2013)
BioMed research international
, vol.1
-
-
Manke, A.1
Wang, L.2
Rojanasakul, Y.3
-
96
-
-
84859706269
-
Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles
-
Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A. Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chemical reviews. 2012; 112: 2323-38. doi:10.1021/cr2002596.
-
(2012)
Chemical reviews
, vol.112
, pp. 2323-2338
-
-
Mahmoudi, M.1
Hofmann, H.2
Rothen-Rutishauser, B.3
Petri-Fink, A.4
-
97
-
-
84877656111
-
Next-generation nanomedicines and nanosimilars: EU regulators' initiatives relating to the development and evaluation of nanomedicines
-
Ehmann F, Sakai-Kato K, Duncan R, Hernan Perez de la Ossa D, Pita R, Vidal JM, et al. Next-generation nanomedicines and nanosimilars: EU regulators' initiatives relating to the development and evaluation of nanomedicines. Nanomedicine (Lond). 2013; 8: 849-56. doi:10.2217/nnm.13.68.
-
(2013)
Nanomedicine (Lond)
, vol.8
, pp. 849-856
-
-
Ehmann, F.1
Sakai-Kato, K.2
Duncan, R.3
Hernan Perez de la Ossa, D.4
Pita, R.5
Vidal, J.M.6
-
98
-
-
84969323356
-
-
[Internet] European Medicines Agency. Regulatory and procedural guideline. 2009. http://www.ema.europa.eu/docs/en_GB/document_library/Regulatory_and_procedural_guideline/2009/10/WC500004481.pdf.
-
(2009)
Regulatory and procedural guideline
-
-
-
99
-
-
84969323358
-
-
[Internet] EU legislation on medical devices: Guidance document. 2012. http://ec.europa.eu/health/medical-devices/files/meddev/2_1_6_ol_en.pdf .
-
(2012)
-
-
-
100
-
-
84969311383
-
-
[Internet] AFSSAPS: Recommandations for toxicological evaluation of nanoparticle medicinal products. 2011. http://ansm.sante.fr/var/ansm_site/storage/original/application/2968a90b774b563b03405379b7d4f4e6.pdf.
-
(2011)
-
-
-
101
-
-
70449672364
-
A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles
-
Mahmoudi M, Simchi A, Imani M, Shokrgozar MA, Milani AS, Hafeli UO, et al. A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloids and surfaces B, Biointerfaces. 2010; 75: 300-9. doi:10.1016/j.colsurfb.2009.08.044.
-
(2010)
Colloids and surfaces B, Biointerfaces
, vol.75
, pp. 300-309
-
-
Mahmoudi, M.1
Simchi, A.2
Imani, M.3
Shokrgozar, M.A.4
Milani, A.S.5
Hafeli, U.O.6
-
102
-
-
84969310646
-
-
[Internet] European Medicines Agency: Reflection paper on non-clinical studies for generic nanoparticle iron medicinal product applications. 2011. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/04/WC500105048.pdf.
-
(2011)
-
-
-
104
-
-
80755131880
-
-
[Internet] European Medicines Agency: Guideline on clinical evaluation of diagnostic agents. 2009. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003580.pdf.
-
(2009)
Guideline on clinical evaluation of diagnostic agents
-
-
-
105
-
-
84865513273
-
Theranostic applications of nanoparticles in cancer
-
Ahmed N, Fessi H, Elaissari A. Theranostic applications of nanoparticles in cancer. Drug discovery today. 2012; 17: 928-34. doi:10.1016/j.drudis.2012.03.010.
-
(2012)
Drug discovery today
, vol.17
, pp. 928-934
-
-
Ahmed, N.1
Fessi, H.2
Elaissari, A.3
-
106
-
-
84860920545
-
Gadolinium loaded nanoparticles in theranostic magnetic resonance imaging
-
Liu Y, Zhang N. Gadolinium loaded nanoparticles in theranostic magnetic resonance imaging. Biomaterials. 2012; 33: 5363-75. doi:10.1016/j.biomaterials.2012.03.084.
-
(2012)
Biomaterials
, vol.33
, pp. 5363-5375
-
-
Liu, Y.1
Zhang, N.2
-
107
-
-
80053582557
-
Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery
-
Xu H, Cheng L, Wang C, Ma X, Li Y, Liu Z. Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery. Biomaterials. 2011; 32: 9364-73. doi:10.1016/j.biomaterials.2011.08.053.
-
(2011)
Biomaterials
, vol.32
, pp. 9364-9373
-
-
Xu, H.1
Cheng, L.2
Wang, C.3
Ma, X.4
Li, Y.5
Liu, Z.6
-
108
-
-
84902517614
-
Magnetically responsive smart nanoparticles for cancer treatment with a combination of magnetic hyperthermia and remote-control drug release
-
Hayashi K, Nakamura M, Miki H, Ozaki S, Abe M, Matsumoto T, et al. Magnetically responsive smart nanoparticles for cancer treatment with a combination of magnetic hyperthermia and remote-control drug release. Theranostics. 2014; 4: 834-44. doi:10.7150/thno.9199.
-
(2014)
Theranostics
, vol.4
, pp. 834-844
-
-
Hayashi, K.1
Nakamura, M.2
Miki, H.3
Ozaki, S.4
Abe, M.5
Matsumoto, T.6
-
111
-
-
84921883917
-
Gadolinium-free extracellular MR contrast agent for tumor imaging
-
Nofiele JT, Haedicke IE, Zhu Yle K, Zhang XA, Cheng HL. Gadolinium-free extracellular MR contrast agent for tumor imaging. Journal of magnetic resonance imaging: JMRI. 2015; 41: 397-403. doi:10.1002/jmri.24561.
-
(2015)
Journal of magnetic resonance imaging: JMRI
, vol.41
, pp. 397-403
-
-
Nofiele, J.T.1
Haedicke, I.E.2
Zhu Yle, K.3
Zhang, X.A.4
Cheng, H.L.5
-
112
-
-
33847239121
-
Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis
-
Kuo PH, Kanal E, Abu-Alfa AK, Cowper SE. Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology. 2007; 242: 647-9. doi:10.1148/radiol.2423061640.
-
(2007)
Radiology
, vol.242
, pp. 647-649
-
-
Kuo, P.H.1
Kanal, E.2
Abu-Alfa, A.K.3
Cowper, S.E.4
-
113
-
-
55949126429
-
Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats
-
Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond). 2008; 3: 703-17. doi:10.2217/17435889.3.5.703.
-
(2008)
Nanomedicine (Lond)
, vol.3
, pp. 703-717
-
-
Longmire, M.1
Choyke, P.L.2
Kobayashi, H.3
-
114
-
-
73649107643
-
Risk factors for NSF: a literature review
-
Prince MR, Zhang HL, Roditi GH, Leiner T, Kucharczyk W. Risk factors for NSF: a literature review. Journal of magnetic resonance imaging: JMRI. 2009; 30: 1298-308. doi:10.1002/jmri.21973.
-
(2009)
Journal of magnetic resonance imaging: JMRI
, vol.30
, pp. 1298-1308
-
-
Prince, M.R.1
Zhang, H.L.2
Roditi, G.H.3
Leiner, T.4
Kucharczyk, W.5
-
115
-
-
0030439545
-
Anthropogenic origin of positive gadolinium anomalies in river waters
-
Bau M, Dulski P. Anthropogenic origin of positive gadolinium anomalies in river waters. Earth and Planetary Science Letters. 1996; 143: 245-55. doi:10.1016/0012-821X(96)00127-6.
-
(1996)
Earth and Planetary Science Letters
, vol.143
, pp. 245-255
-
-
Bau, M.1
Dulski, P.2
-
116
-
-
0036135098
-
Occurrence of an anthropogenic gadolinium anomaly in river and coastal waters of southern France
-
Elbaz-Poulichet F, Seidel JL, Othoniel C. Occurrence of an anthropogenic gadolinium anomaly in river and coastal waters of southern France. Water research. 2002; 36: 1102-5. doi:10.1016/S0043-1354(01)00370-0.
-
(2002)
Water research
, vol.36
, pp. 1102-1105
-
-
Elbaz-Poulichet, F.1
Seidel, J.L.2
Othoniel, C.3
|