메뉴 건너뛰기




Volumn 24, Issue 6, 2015, Pages

No-reference video quality measurement: Added value of machine learning

Author keywords

deep learning; no reference video quality assessment; objective studies; quality of experience; subjective studies

Indexed keywords

ARTIFICIAL INTELLIGENCE; DIGITAL TELEVISION; FORECASTING; IMAGE QUALITY; LEARNING SYSTEMS; MOBILE TELECOMMUNICATION SYSTEMS; QUALITY OF SERVICE; TELEVISION BROADCASTING;

EID: 84954195661     PISSN: 10179909     EISSN: 1560229X     Source Type: Journal    
DOI: 10.1117/1.JEI.24.6.061208     Document Type: Article
Times cited : (29)

References (46)
  • 1
    • 84913592850 scopus 로고    scopus 로고
    • Qualinet 3 June 2012 (12 December, 2015)
    • Qualinet, "Qualinet white paper on definitions of quality of experience," 3 June 2012, http://www.qualinet.eu/images/stories/whitepaper-v1.1-dagstuhl-output-corrected.pdf (12 December 2015).
    • Qualinet White Paper on Definitions of Quality of Experience
  • 2
    • 79957780748 scopus 로고    scopus 로고
    • Objective video quality assessment methods: A classification, review, performance comparison
    • S. Chikkerur et al., "Objective video quality assessment methods: a classification, review, performance comparison," IEEE Trans. Broadcast. 57, 165-182 (2011).
    • (2011) IEEE Trans. Broadcast. , vol.57 , pp. 165-182
    • Chikkerur, S.1
  • 4
    • 0036650987 scopus 로고    scopus 로고
    • Objective quality assessment of MPEG-2 video streams by using CBP neural networks
    • P. Gastaldo, S. Rovetta, R. Zunino, "Objective quality assessment of MPEG-2 video streams by using CBP neural networks," IEEE Trans. Neural Netw. 13, 939-947 (2002).
    • (2002) IEEE Trans. Neural Netw. , vol.13 , pp. 939-947
    • Gastaldo, P.1    Rovetta, S.2    Zunino, R.3
  • 5
    • 33750135479 scopus 로고    scopus 로고
    • A convolutional neural network approach for objective video quality assessment
    • P. Le Callet, C. Viard-Gaudin, D. Barba, "A convolutional neural network approach for objective video quality assessment," IEEE Trans. Neural Netw. 17, 1316-1327 (2006).
    • (2006) IEEE Trans. Neural Netw. , vol.17 , pp. 1316-1327
    • Le Callet, P.1    Viard-Gaudin, C.2    Barba, D.3
  • 6
    • 84949926896 scopus 로고    scopus 로고
    • No-reference video quality assessment via feature learning
    • J. Xu et al., "No-reference video quality assessment via feature learning," in IEEE Int. Conf. on Image Processing, pp. 491-495 (2014).
    • (2014) IEEE Int. Conf. on Image Processing , pp. 491-495
    • Xu, J.1
  • 7
    • 84926457035 scopus 로고    scopus 로고
    • No-reference video quality assessment based on artifact measurement, statistical analysis
    • K. Zhu et al., "No-reference video quality assessment based on artifact measurement, statistical analysis," IEEE Trans. Circuits Syst. Video Technol. 25(4), 533-546 (2015).
    • (2015) IEEE Trans. Circuits Syst. Video Technol. , vol.25 , Issue.4 , pp. 533-546
    • Zhu, K.1
  • 8
    • 84881435260 scopus 로고    scopus 로고
    • Constructing a no-reference H.264/AVC bitstreambased video quality metric using genetic programming-based symbolic regression
    • N. Staelens et al., "Constructing a no-reference H.264/AVC bitstreambased video quality metric using genetic programming-based symbolic regression," IEEE Trans. Circuits Syst. Video Technol. 23, 1322-1333 (2013).
    • (2013) IEEE Trans. Circuits Syst. Video Technol. , vol.23 , pp. 1322-1333
    • Staelens, N.1
  • 10
    • 84897741517 scopus 로고    scopus 로고
    • A spatiotemporal no-reference video quality assessment model
    • B. Konuk et al., "A spatiotemporal no-reference video quality assessment model," in 20th IEEE Int. Conf. on Image Processing, pp. 54-58 (2013).
    • (2013) 20th IEEE Int. Conf. on Image Processing , pp. 54-58
    • Konuk, B.1
  • 11
    • 84938064691 scopus 로고    scopus 로고
    • No-reference image, video quality assessment: A classification, review of recent approaches
    • M. Shahid et al., "No-reference image, video quality assessment: a classification, review of recent approaches," EURASIP J. Image Video Process. 2014(1), 40 (2014).
    • (2014) EURASIP J. Image Video Process. , vol.2014 , Issue.1 , pp. 40
    • Shahid, M.1
  • 13
    • 0036995754 scopus 로고    scopus 로고
    • A study of real-time packet video quality using random neural networks
    • S. Mohamed, G. Rubino, "A study of real-time packet video quality using random neural networks," IEEE Trans. Circuits Syst. Video Technol. 12, 1071-1083 (2002).
    • (2002) IEEE Trans. Circuits Syst. Video Technol. , vol.12 , pp. 1071-1083
    • Mohamed, S.1    Rubino, G.2
  • 14
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Y. Bengio, "Learning deep architectures for AI," Found. Trends Mach. Learn. 2, 1-127 (2009).
    • (2009) Found. Trends Mach. Learn. , vol.2 , pp. 1-127
    • Bengio, Y.1
  • 18
    • 85116185326 scopus 로고    scopus 로고
    • Automation of subjective video quality measurements
    • ACM
    • J. Joskowicz et al., "Automation of subjective video quality measurements," in Proc. of the Latin America Networking Conf., pp. 7:1-7:5, ACM (2014).
    • (2014) Proc. of the Latin America Networking Conf. , pp. 71-75
    • Joskowicz, J.1
  • 20
    • 84899518748 scopus 로고    scopus 로고
    • A model for video quality assessment considering packet loss for broadcast digital television coded in H.264
    • J. Joskowicz, R. Sotelo, "A model for video quality assessment considering packet loss for broadcast digital television coded in H.264," Int. J. Digit. Multimed. Broadcast. 2014(5786), 11 (2014).
    • (2014) Int. J. Digit. Multimed. Broadcast. , vol.2014 , Issue.5786 , pp. 11
    • Joskowicz, J.1    Sotelo, R.2
  • 22
    • 17544389864 scopus 로고    scopus 로고
    • Survey of random neural network applications
    • H. Bakrcolu, T. Kocąk, "Survey of random neural network applications," Eur. J. Oper. Res. 126(2), 319-330 (2000).
    • (2000) Eur. J. Oper. Res. , vol.126 , Issue.2 , pp. 319-330
    • Bakrcolu, H.1    Kocąk, T.2
  • 23
    • 0000145931 scopus 로고
    • Stability of the random neural network model
    • E. Gelenbe, "Stability of the random neural network model," Neural Comput. 2, 239-247 (1990).
    • (1990) Neural Comput , vol.2 , pp. 239-247
    • Gelenbe, E.1
  • 24
    • 79952385044 scopus 로고    scopus 로고
    • Quality of experience estimation using frame loss pattern, video encoding characteristics in DVB-H networks
    • K. Singh, G. Rubino, "Quality of experience estimation using frame loss pattern, video encoding characteristics in DVB-H networks," in 18th Int. Packet Video Workshop, pp. 150-157 (2010).
    • (2010) 18th Int. Packet Video Workshop , pp. 150-157
    • Singh, K.1    Rubino, G.2
  • 27
    • 84892142922 scopus 로고    scopus 로고
    • Computer science: The learning machines
    • N. Jones, "Computer science: the learning machines," Nature 505(7482), 146-148 (2014).
    • (2014) Nature , vol.505 , Issue.7482 , pp. 146-148
    • Jones, N.1
  • 28
    • 84897953259 scopus 로고    scopus 로고
    • From neural networks to deep learning: Zeroing in on the human brain
    • J. Laserson, "From neural networks to deep learning: zeroing in on the human brain," XRDS 18, 29-34 (2011).
    • (2011) XRDS , vol.18 , pp. 29-34
    • Laserson, J.1
  • 29
    • 56449110012 scopus 로고    scopus 로고
    • Classification using discriminative restricted Boltzmann machines
    • ACM, New York
    • H. Larochelle, Y. Bengio, "Classification using discriminative restricted Boltzmann machines," in Proc. of the 25th Int. Conf. on Machine Learning, pp. 536-543, ACM, New York (2008).
    • (2008) Proc. of the 25th Int. Conf. on Machine Learning , pp. 536-543
    • Larochelle, H.1    Bengio, Y.2
  • 31
    • 84886502372 scopus 로고    scopus 로고
    • Automatically mapped transfer between reinforcement learning tasks via three-way restricted Boltzmann machines
    • H. Ammar et al., "Automatically mapped transfer between reinforcement learning tasks via three-way restricted Boltzmann machines," Lec. Notes Comput. Sci. 8189, 449-464 (2013).
    • (2013) Lec. Notes Comput. Sci. , vol.8189 , pp. 449-464
    • Ammar, H.1
  • 33
    • 33749243771 scopus 로고    scopus 로고
    • The rate adapting Poisson model for information retrieval, object recognition
    • ACM, New York
    • P. V. Gehler, A. D. Holub, M. Welling, "The rate adapting Poisson model for information retrieval, object recognition," in Proc. of the 23rd Int. Conf. on Machine Learning, pp. 337-344, ACM, New York (2006).
    • (2006) Proc. of the 23rd Int. Conf. on Machine Learning , pp. 337-344
    • Gehler, P.V.1    Holub, A.D.2    Welling, M.3
  • 34
    • 84942648494 scopus 로고    scopus 로고
    • Factored four way conditional restricted Boltzmann machines for activity recognition
    • D. C. Mocanu et al., "Factored four way conditional restricted Boltzmann machines for activity recognition," Pattern Recognit. Lett. 66, 100-108 (2015).
    • (2015) Pattern Recognit. Lett. , vol.66 , pp. 100-108
    • Mocanu, D.C.1
  • 36
    • 84942645422 scopus 로고    scopus 로고
    • Reduced reference image quality assessment via Boltzmann machines
    • D. Mocanu et al., "Reduced reference image quality assessment via Boltzmann machines," in IFIP/IEEE Int. Symp. on Integrated Network Management, pp. 1278-1281 (2015).
    • (2015) IFIP/IEEE Int. Symp. on Integrated Network Management , pp. 1278-1281
    • Mocanu, D.1
  • 39
    • 0000329993 scopus 로고
    • Information processing in dynamical systems: Foundations of harmony theory
    • D. E. Rumelhart, J. L. McClelland, PDP Research Group MIT Press, Cambridge, Massachusetts
    • P. Smolensky, "Information processing in dynamical systems: foundations of harmony theory, in Parallel Distributed Processing: Explorations in the Microstructure of Cognition," Vol. 1, D. E. Rumelhart, J. L. McClelland, PDP Research Group, pp. 194-281, MIT Press, Cambridge, Massachusetts (1986).
    • (1986) Parallel Distributed Processing: Explorations in the Microstructure of Cognition , vol.1 , pp. 194-281
    • Smolensky, P.1
  • 40
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Comput. 18, 1527-1554 (2006).
    • (2006) Neural Comput , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 41
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • D. Rumelhart, G. Hintont, R. Williams, "Learning representations by back-propagating errors," Nature 323(6088), 533-536 (1986).
    • (1986) Nature , vol.323 , Issue.6088 , pp. 533-536
    • Rumelhart, D.1    Hintont, G.2    Williams, R.3
  • 42
    • 84872506495 scopus 로고    scopus 로고
    • A practical guide to training restricted Boltzmann machines
    • G. E. Hinton, "A practical guide to training restricted Boltzmann machines," Lec. Notes Comput. Sci. 7700, 599-619 (2012).
    • (2012) Lec. Notes Comput. Sci. , vol.7700 , pp. 599-619
    • Hinton, G.E.1
  • 44
    • 80555140075 scopus 로고    scopus 로고
    • Scikit-learn: Machine learning in Python
    • F. Pedregosa et al., "Scikit-learn: Machine learning in Python," J. Mach. Learn. Res. 12, 2825-2830 (2011).
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2825-2830
    • Pedregosa, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.