메뉴 건너뛰기




Volumn , Issue , 2013, Pages 1799-1805

A theoretic framework of K-means-based Consensus Clustering

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTER STRUCTURE; CLUSTERING QUALITY; CONSENSUS CLUSTERING; HIGH ROBUSTNESS; MISSING VALUES; STATE-OF-THE-ART METHODS; SYSTEMATIC STUDY; UTILITY FUNCTIONS;

EID: 84896061966     PISSN: 10450823     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (39)

References (27)
  • 4
    • 85081811282 scopus 로고    scopus 로고
    • Heterogeneous data integration with the consensus clustering formalism
    • V. Filkov and S. Steven. Heterogeneous data integration with the consensus clustering formalism. Data Integration in the Life Sciences, 2004.
    • (2004) Data Integration in the Life Sciences
    • Filkov, V.1    Steven, S.2
  • 12
    • 77956770604 scopus 로고    scopus 로고
    • On combining multiple clusterings: An overview and a new perspective
    • T. Li, M. M. Ogihara, and S. Ma. On combining multiple clusterings: an overview and a new perspective. Applied Intelligence, 32(2):207-219, 2010.
    • (2010) Applied Intelligence , vol.32 , Issue.2 , pp. 207-219
    • Li, T.1    Ogihara, M.M.2    Ma, S.3
  • 15
    • 0042763812 scopus 로고    scopus 로고
    • Reinterpreting the category utility function
    • November
    • B. Mirkin. Reinterpreting the category utility function. Machine Learning, 45(2):219-228, November 2001.
    • (2001) Machine Learning , vol.45 , Issue.2 , pp. 219-228
    • Mirkin, B.1
  • 16
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data
    • S. Monti, P. Tamayo, J. Mesirov, and T. Golub. Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data. Machine Learning, 52(1-2):91-118, 2003.
    • (2003) Machine Learning , vol.52 , Issue.1-2 , pp. 91-118
    • Monti, S.1    Tamayo, P.2    Mesirov, J.3    Golub, T.4
  • 18
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - A knowledge reuse framework for combining partitions
    • A. Strehl and J. Ghosh. Cluster ensembles - a knowledge reuse framework for combining partitions. Journal of Machine Learning Research, 3:583-617, 2002.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 24
    • 58249083744 scopus 로고    scopus 로고
    • Clustering aggregation by probability accumulation
    • X. Wang, C. Yang, and J. Zhou. Clustering aggregation by probability accumulation. Pattern Recognition, 42(5):668-675, 2009.
    • (2009) Pattern Recognition , vol.42 , Issue.5 , pp. 668-675
    • Wang, X.1    Yang, C.2    Zhou, J.3
  • 25
    • 84885576449 scopus 로고    scopus 로고
    • A generalization of distance functions for fuzzy c-means clustering with centroids of arithmetic means
    • J. Wu, H. Xiong, C. Liu, and J. Chen. A generalization of distance functions for fuzzy c-means clustering with centroids of arithmetic means. IEEE Transactions on Fuzzy Systems, 20(3):557-571, 2012.
    • (2012) IEEE Transactions on Fuzzy Systems , vol.20 , Issue.3 , pp. 557-571
    • Wu, J.1    Xiong, H.2    Liu, C.3    Chen, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.