메뉴 건너뛰기




Volumn , Issue PART 2, 2013, Pages 1110-1118

Markov network estimation from multi-attribute data

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; COMPLEX NETWORKS; LEARNING SYSTEMS;

EID: 84897549703     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (19)

References (28)
  • 1
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation
    • Banerjee, O., El Ghaoui, L., and dAspremont, A. Model selection through sparse maximum likelihood estimation. J. Mach. Learn. Res., 9:485-516, 2008.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 485-516
    • Banerjee, O.1    El Ghaoui, L.2    DAspremont, A.3
  • 2
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • Beck, A. and Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci., 2:183-202, 2009.
    • (2009) SIAM J. Imag. Sci. , vol.2 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 3
    • 79960110811 scopus 로고    scopus 로고
    • 1 minimization approach to sparse precision matrix estimation
    • 1 minimization approach to sparse precision matrix estimation. J. Am. Statist. Assoc., 106:594-607, 2011.
    • (2011) J. Am. Statist. Assoc. , vol.106 , pp. 594-607
    • Cai, T.1    Liu, W.2    Luo, X.3
  • 4
    • 80051472104 scopus 로고    scopus 로고
    • Inferring multiple graphical structures
    • Chiquet, J., Grandvalet, Y., and Ambroise, C. Inferring multiple graphical structures. Stat. Comput., 21(4):537-553, 2011.
    • (2011) Stat. Comput. , vol.21 , Issue.4 , pp. 537-553
    • Chiquet, J.1    Grandvalet, Y.2    Ambroise, C.3
  • 6
    • 0001038826 scopus 로고
    • Covariance selection
    • Dempster, A. P. Covariance selection. Biometrics, 28:157-175, 1972.
    • (1972) Biometrics , vol.28 , pp. 157-175
    • Dempster, A.P.1
  • 7
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Friedman, J. H., Hastie, T. J., and Tibshirani, R. J. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3):432-441, 2008.
    • (2008) Biostatistics , vol.9 , Issue.3 , pp. 432-441
    • Friedman, J.H.1    Hastie, T.J.2    Tibshirani, R.J.3
  • 8
    • 79952164560 scopus 로고    scopus 로고
    • Joint estimation of multiple graphical models
    • Guo, J., Levina, E., Michailidis, G., and Zhu, J. Joint estimation of multiple graphical models. Biometrika, 98 (1):1-15, 2011.
    • (2011) Biometrika , vol.98 , Issue.1 , pp. 1-15
    • Guo, J.1    Levina, E.2    Michailidis, G.3    Zhu, J.4
  • 9
    • 77956497082 scopus 로고    scopus 로고
    • Multi-task learning of Gaussian graphical models
    • Fürnkranz, Johannes and Joachims, Thorsten (eds.), Omnipress, Haifa, Israel, June
    • Honorio, J. and Samaras, D. Multi-task learning of Gaussian graphical models. In Fürnkranz, Johannes and Joachims, Thorsten (eds.), Proc. 27 Int. Conf. Mach. Learn., pp. 447-454. Omnipress, Haifa, Israel, June 2010.
    • (2010) Proc. 27 Int. Conf. Mach. Learn. , pp. 447-454
    • Honorio, J.1    Samaras, D.2
  • 10
    • 84954478873 scopus 로고    scopus 로고
    • High-dimensional sparse inverse covariance estimation using greedy methods
    • Lawrence, Neil and Girolami, Mark (eds.)
    • Johnson, C., Jalali, A., and Ravikumar, P. High-dimensional sparse inverse covariance estimation using greedy methods. In Lawrence, Neil and Girolami, Mark (eds.), Proc. 15 Int. Conf. Artif. Intel. Statist., pp. 574-582. 2012.
    • (2012) Proc. 15 Int. Conf. Artif. Intel. Statist. , pp. 574-582
    • Johnson, C.1    Jalali, A.2    Ravikumar, P.3
  • 11
    • 84870029272 scopus 로고    scopus 로고
    • Multi-attribute networks and the impact of partial information on inference and characterization
    • Katenka, N. and Kolaczyk, E. D. Multi-attribute networks and the impact of partial information on inference and characterization. Ann. Appl. Stat., 6(3):1068-1094, 2011.
    • (2011) Ann. Appl. Stat. , vol.6 , Issue.3 , pp. 1068-1094
    • Katenka, N.1    Kolaczyk, E.D.2
  • 12
    • 84867124870 scopus 로고    scopus 로고
    • Consistent covariance selection from data with missing values
    • Langford, John and Pineau, Joelle (eds.), New York, NY, USA, July Omni-press
    • Kolar, M. and Xing, E. P. Consistent covariance selection from data with missing values. In Langford, John and Pineau, Joelle (eds.), Proc. 29 Int. Conf. Mach. Learn., pp. 551-558, New York, NY, USA, July 2012. Omni-press.
    • (2012) Proc. 29 Int. Conf. Mach. Learn. , pp. 551-558
    • Kolar, M.1    Xing, E.P.2
  • 15
    • 73949122606 scopus 로고    scopus 로고
    • Sparsistency and rates of convergence in large covariance matrix estimation
    • Lam, C. and Fan, J. Sparsistency and rates of convergence in large covariance matrix estimation. Ann. Statist., 37: 4254-4278, 2009.
    • (2009) Ann. Statist. , vol.37 , pp. 4254-4278
    • Lam, C.1    Fan, J.2
  • 16
    • 33645568358 scopus 로고    scopus 로고
    • Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks
    • Li, H. and Gui, J. Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks. Biostatistics, 7(2):302-317, 2006.
    • (2006) Biostatistics , vol.7 , Issue.2 , pp. 302-317
    • Li, H.1    Gui, J.2
  • 18
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the Lasso
    • DOI 10.1214/009053606000000281
    • Meinshausen, N. and Bühlmann, P. High dimensional graphs and variable selection with the lasso. Ann. Statist., 34(3):1436-1462, 2006. (Pubitemid 44231168)
    • (2006) Annals of Statistics , vol.34 , Issue.3 , pp. 1436-1462
    • Meinshausen, N.1    Buhlmann, P.2
  • 19
    • 66549116888 scopus 로고    scopus 로고
    • Partial correlation estimation by joint sparse regression models
    • Peng, Jie, Wang, Pei, Zhou, Nengfeng, and Zhu, Ji. Partial correlation estimation by joint sparse regression models. J. Am. Statist. Assoc., 104(486):735-746, 2009.
    • (2009) J. Am. Statist. Assoc. , vol.104 , Issue.486 , pp. 735-746
    • Peng, J.1    Wang, P.2    Zhou, N.3    Zhu, J.4
  • 22
    • 84862880599 scopus 로고    scopus 로고
    • Likelihood-based selection and sharp parameter estimation
    • Shen, X., Pan, W., and Zhu, Y. Likelihood-based selection and sharp parameter estimation. J. Am. Statist. Assoc., 107:223-232, 2012.
    • (2012) J. Am. Statist. Assoc. , vol.107 , pp. 223-232
    • Shen, X.1    Pan, W.2    Zhu, Y.3
  • 23
    • 0035533631 scopus 로고    scopus 로고
    • Convergence of a block coordinate descent method for nondifferentiable minimization
    • Tseng, P. Convergence of a block coordinate descent method for nondifferentiable minimization. J. Optim. Theory Appl., 109(3):475-494, 2001.
    • (2001) J. Optim. Theory Appl. , vol.109 , Issue.3 , pp. 475-494
    • Tseng, P.1
  • 24
    • 85161970602 scopus 로고    scopus 로고
    • Brain covariance selection: Better individual functional connectivity models using population prior
    • Lafferty, J., Williams, C. K. I., Shawe-Taylor, J., Zemel, R.S., and Culotta, A. (eds.)
    • Varoquaux, G., Gramfort, A., Poline, J.-B., and Thirion, B. Brain covariance selection: better individual functional connectivity models using population prior. In Lafferty, J., Williams, C. K. I., Shawe-Taylor, J., Zemel, R.S., and Culotta, A. (eds.), Adv. Neural Inf. Proc. Sys. 23, pp. 2334-2342. 2010.
    • (2010) Adv. Neural Inf. Proc. Sys. 23 , pp. 2334-2342
    • Varoquaux, G.1    Gramfort, A.2    Poline, J.-B.3    Thirion, B.4
  • 25
    • 77956916683 scopus 로고    scopus 로고
    • High dimensional inverse covariance matrix estimation via linear programming
    • Yuan, M. High dimensional inverse covariance matrix estimation via linear programming. J. Mach. Learn. Res., 11:2261-2286, 2010.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 2261-2286
    • Yuan, M.1
  • 27
    • 33947115409 scopus 로고    scopus 로고
    • Model selection and estimation in the Gaussian graphical model
    • DOI 10.1093/biomet/asm018
    • Yuan, M. and Lin, Y. Model selection and estimation in the gaussian graphical model. Biometrika, 94(1):19-35, 2007. (Pubitemid 46410725)
    • (2007) Biometrika , vol.94 , Issue.1 , pp. 19-35
    • Yuan, M.1    Lin, Y.2
  • 28
    • 84860650411 scopus 로고    scopus 로고
    • The huge package for high-dimensional undirected graph estimation in r
    • Zhao, T., Liu, H., Roeder, K. E., Lafferty, J. D., and Wasserman, L. A. The huge package for high-dimensional undirected graph estimation in r. J. Mach. Learn. Res., 13:1059-1062, 2012.
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 1059-1062
    • Zhao, T.1    Liu, H.2    Roeder, K.E.3    Lafferty, J.D.4    Wasserman, L.A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.