-
1
-
-
41549101939
-
Model selection through sparse maximum likelihood estimation
-
Banerjee, O., El Ghaoui, L., and dAspremont, A. Model selection through sparse maximum likelihood estimation. J. Mach. Learn. Res., 9:485-516, 2008.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 485-516
-
-
Banerjee, O.1
El Ghaoui, L.2
DAspremont, A.3
-
2
-
-
85014561619
-
A fast iterative shrinkage-thresholding algorithm for linear inverse problems
-
Beck, A. and Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci., 2:183-202, 2009.
-
(2009)
SIAM J. Imag. Sci.
, vol.2
, pp. 183-202
-
-
Beck, A.1
Teboulle, M.2
-
3
-
-
79960110811
-
1 minimization approach to sparse precision matrix estimation
-
1 minimization approach to sparse precision matrix estimation. J. Am. Statist. Assoc., 106:594-607, 2011.
-
(2011)
J. Am. Statist. Assoc.
, vol.106
, pp. 594-607
-
-
Cai, T.1
Liu, W.2
Luo, X.3
-
4
-
-
80051472104
-
Inferring multiple graphical structures
-
Chiquet, J., Grandvalet, Y., and Ambroise, C. Inferring multiple graphical structures. Stat. Comput., 21(4):537-553, 2011.
-
(2011)
Stat. Comput.
, vol.21
, Issue.4
, pp. 537-553
-
-
Chiquet, J.1
Grandvalet, Y.2
Ambroise, C.3
-
5
-
-
84877788956
-
-
Technical report, University of Washington
-
Danaher, P., Wang, P., and Witten, D. M. The joint graphical lasso for inverse covariance estimation across multiple classes. Technical report, University of Washington, 2011.
-
(2011)
The Joint Graphical Lasso for Inverse Covariance Estimation Across Multiple Classes
-
-
Danaher, P.1
Wang, P.2
Witten, D.M.3
-
6
-
-
0001038826
-
Covariance selection
-
Dempster, A. P. Covariance selection. Biometrics, 28:157-175, 1972.
-
(1972)
Biometrics
, vol.28
, pp. 157-175
-
-
Dempster, A.P.1
-
7
-
-
45849134070
-
Sparse inverse covariance estimation with the graphical lasso
-
Friedman, J. H., Hastie, T. J., and Tibshirani, R. J. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3):432-441, 2008.
-
(2008)
Biostatistics
, vol.9
, Issue.3
, pp. 432-441
-
-
Friedman, J.H.1
Hastie, T.J.2
Tibshirani, R.J.3
-
8
-
-
79952164560
-
Joint estimation of multiple graphical models
-
Guo, J., Levina, E., Michailidis, G., and Zhu, J. Joint estimation of multiple graphical models. Biometrika, 98 (1):1-15, 2011.
-
(2011)
Biometrika
, vol.98
, Issue.1
, pp. 1-15
-
-
Guo, J.1
Levina, E.2
Michailidis, G.3
Zhu, J.4
-
9
-
-
77956497082
-
Multi-task learning of Gaussian graphical models
-
Fürnkranz, Johannes and Joachims, Thorsten (eds.), Omnipress, Haifa, Israel, June
-
Honorio, J. and Samaras, D. Multi-task learning of Gaussian graphical models. In Fürnkranz, Johannes and Joachims, Thorsten (eds.), Proc. 27 Int. Conf. Mach. Learn., pp. 447-454. Omnipress, Haifa, Israel, June 2010.
-
(2010)
Proc. 27 Int. Conf. Mach. Learn.
, pp. 447-454
-
-
Honorio, J.1
Samaras, D.2
-
10
-
-
84954478873
-
High-dimensional sparse inverse covariance estimation using greedy methods
-
Lawrence, Neil and Girolami, Mark (eds.)
-
Johnson, C., Jalali, A., and Ravikumar, P. High-dimensional sparse inverse covariance estimation using greedy methods. In Lawrence, Neil and Girolami, Mark (eds.), Proc. 15 Int. Conf. Artif. Intel. Statist., pp. 574-582. 2012.
-
(2012)
Proc. 15 Int. Conf. Artif. Intel. Statist.
, pp. 574-582
-
-
Johnson, C.1
Jalali, A.2
Ravikumar, P.3
-
11
-
-
84870029272
-
Multi-attribute networks and the impact of partial information on inference and characterization
-
Katenka, N. and Kolaczyk, E. D. Multi-attribute networks and the impact of partial information on inference and characterization. Ann. Appl. Stat., 6(3):1068-1094, 2011.
-
(2011)
Ann. Appl. Stat.
, vol.6
, Issue.3
, pp. 1068-1094
-
-
Katenka, N.1
Kolaczyk, E.D.2
-
12
-
-
84867124870
-
Consistent covariance selection from data with missing values
-
Langford, John and Pineau, Joelle (eds.), New York, NY, USA, July Omni-press
-
Kolar, M. and Xing, E. P. Consistent covariance selection from data with missing values. In Langford, John and Pineau, Joelle (eds.), Proc. 29 Int. Conf. Mach. Learn., pp. 551-558, New York, NY, USA, July 2012. Omni-press.
-
(2012)
Proc. 29 Int. Conf. Mach. Learn.
, pp. 551-558
-
-
Kolar, M.1
Xing, E.P.2
-
13
-
-
84870264927
-
Estimating Time-Varying networks
-
Kolar, M., Song, L., Ahmed, A., and Xing, E. P. Estimating Time-Varying networks. Ann. Appl. Statist., 4(1): 94-123, 2010.
-
(2010)
Ann. Appl. Statist.
, vol.4
, Issue.1
, pp. 94-123
-
-
Kolar, M.1
Song, L.2
Ahmed, A.3
Xing, E.P.4
-
14
-
-
84897542554
-
-
Technical report, Carnegie Mellon University (arXiv:1210.7665)
-
Kolar, M., Liu, H., and Xing, E. P. Graph estimation from multi-attribute data. Technical report, Carnegie Mellon University (arXiv:1210.7665), 2012.
-
(2012)
Graph Estimation from Multi-attribute Data
-
-
Kolar, M.1
Liu, H.2
Xing, E.P.3
-
15
-
-
73949122606
-
Sparsistency and rates of convergence in large covariance matrix estimation
-
Lam, C. and Fan, J. Sparsistency and rates of convergence in large covariance matrix estimation. Ann. Statist., 37: 4254-4278, 2009.
-
(2009)
Ann. Statist.
, vol.37
, pp. 4254-4278
-
-
Lam, C.1
Fan, J.2
-
16
-
-
33645568358
-
Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks
-
Li, H. and Gui, J. Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks. Biostatistics, 7(2):302-317, 2006.
-
(2006)
Biostatistics
, vol.7
, Issue.2
, pp. 302-317
-
-
Li, H.1
Gui, J.2
-
18
-
-
33747163541
-
High-dimensional graphs and variable selection with the Lasso
-
DOI 10.1214/009053606000000281
-
Meinshausen, N. and Bühlmann, P. High dimensional graphs and variable selection with the lasso. Ann. Statist., 34(3):1436-1462, 2006. (Pubitemid 44231168)
-
(2006)
Annals of Statistics
, vol.34
, Issue.3
, pp. 1436-1462
-
-
Meinshausen, N.1
Buhlmann, P.2
-
19
-
-
66549116888
-
Partial correlation estimation by joint sparse regression models
-
Peng, Jie, Wang, Pei, Zhou, Nengfeng, and Zhu, Ji. Partial correlation estimation by joint sparse regression models. J. Am. Statist. Assoc., 104(486):735-746, 2009.
-
(2009)
J. Am. Statist. Assoc.
, vol.104
, Issue.486
, pp. 735-746
-
-
Peng, J.1
Wang, P.2
Zhou, N.3
Zhu, J.4
-
22
-
-
84862880599
-
Likelihood-based selection and sharp parameter estimation
-
Shen, X., Pan, W., and Zhu, Y. Likelihood-based selection and sharp parameter estimation. J. Am. Statist. Assoc., 107:223-232, 2012.
-
(2012)
J. Am. Statist. Assoc.
, vol.107
, pp. 223-232
-
-
Shen, X.1
Pan, W.2
Zhu, Y.3
-
23
-
-
0035533631
-
Convergence of a block coordinate descent method for nondifferentiable minimization
-
Tseng, P. Convergence of a block coordinate descent method for nondifferentiable minimization. J. Optim. Theory Appl., 109(3):475-494, 2001.
-
(2001)
J. Optim. Theory Appl.
, vol.109
, Issue.3
, pp. 475-494
-
-
Tseng, P.1
-
24
-
-
85161970602
-
Brain covariance selection: Better individual functional connectivity models using population prior
-
Lafferty, J., Williams, C. K. I., Shawe-Taylor, J., Zemel, R.S., and Culotta, A. (eds.)
-
Varoquaux, G., Gramfort, A., Poline, J.-B., and Thirion, B. Brain covariance selection: better individual functional connectivity models using population prior. In Lafferty, J., Williams, C. K. I., Shawe-Taylor, J., Zemel, R.S., and Culotta, A. (eds.), Adv. Neural Inf. Proc. Sys. 23, pp. 2334-2342. 2010.
-
(2010)
Adv. Neural Inf. Proc. Sys. 23
, pp. 2334-2342
-
-
Varoquaux, G.1
Gramfort, A.2
Poline, J.-B.3
Thirion, B.4
-
25
-
-
77956916683
-
High dimensional inverse covariance matrix estimation via linear programming
-
Yuan, M. High dimensional inverse covariance matrix estimation via linear programming. J. Mach. Learn. Res., 11:2261-2286, 2010.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 2261-2286
-
-
Yuan, M.1
-
27
-
-
33947115409
-
Model selection and estimation in the Gaussian graphical model
-
DOI 10.1093/biomet/asm018
-
Yuan, M. and Lin, Y. Model selection and estimation in the gaussian graphical model. Biometrika, 94(1):19-35, 2007. (Pubitemid 46410725)
-
(2007)
Biometrika
, vol.94
, Issue.1
, pp. 19-35
-
-
Yuan, M.1
Lin, Y.2
-
28
-
-
84860650411
-
The huge package for high-dimensional undirected graph estimation in r
-
Zhao, T., Liu, H., Roeder, K. E., Lafferty, J. D., and Wasserman, L. A. The huge package for high-dimensional undirected graph estimation in r. J. Mach. Learn. Res., 13:1059-1062, 2012.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, pp. 1059-1062
-
-
Zhao, T.1
Liu, H.2
Roeder, K.E.3
Lafferty, J.D.4
Wasserman, L.A.5
|