메뉴 건너뛰기




Volumn 9, Issue 9, 2016, Pages 4352-4360

Automatic Band Selection Using Spatial-Structure Information and Classifier-Based Clustering

Author keywords

Automatic band selection (ABS); clustering with classifier; low discriminating bands; number of bands

Indexed keywords

IMAGE PROCESSING; SPECTROSCOPY;

EID: 84954155328     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2015.2509461     Document Type: Article
Times cited : (40)

References (38)
  • 2
    • 14644408830 scopus 로고    scopus 로고
    • 2D-LDA: A statistical linear discriminant analysis for image matrix
    • M. Li and B. Yuan, "2D-LDA: A statistical linear discriminant analysis for image matrix," Pattern Recognit. Lett., vol. 26, no. 5, pp. 527-532, 2005.
    • (2005) Pattern Recognit. Lett. , vol.26 , Issue.5 , pp. 527-532
    • Li, M.1    Yuan, B.2
  • 3
    • 78650930212 scopus 로고    scopus 로고
    • An efficient method for supervised hyperspectral band selection
    • Jan.
    • H. Yang, Q. Du, H. Su, and Y. Sheng, "An efficient method for supervised hyperspectral band selection," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 1, pp. 138-142, Jan. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.1 , pp. 138-142
    • Yang, H.1    Du, Q.2    Su, H.3    Sheng, Y.4
  • 4
    • 0242458468 scopus 로고    scopus 로고
    • Supervised band selection for optimal use of data from airborne hyperspectral sensors
    • M. Riedmann and E. J. Milton, "Supervised band selection for optimal use of data from airborne hyperspectral sensors," in Proc. IEEE Int. Symp. Geosci. Remote Sens. Symp., 2003, pp. 1770-1772.
    • (2003) Proc. IEEE Int. Symp. Geosci. Remote Sens. Symp. , pp. 1770-1772
    • Riedmann, M.1    Milton, E.J.2
  • 5
    • 84906781720 scopus 로고    scopus 로고
    • Unsupervised band selection by integrating the overall accuracy and redundancy
    • Jan.
    • C. Sui, Y. Tian, Y. Xu, and Y. Xie, "Unsupervised band selection by integrating the overall accuracy and redundancy," IEEE Geosci. Remote Sens. Lett., vol. 12, no. 1, pp. 185-189, Jan. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.1 , pp. 185-189
    • Sui, C.1    Tian, Y.2    Xu, Y.3    Xie, Y.4
  • 6
    • 33750590333 scopus 로고    scopus 로고
    • Band selection for hyperspectral image classification using mutual information
    • Oct.
    • B. Guo, S. R. Gunn, R. Damper, and J. Nelson, "Band selection for hyperspectral image classification using mutual information," IEEE Geosci. Remote Sens. Lett., vol. 3, no. 4, pp. 522-526, Oct. 2006.
    • (2006) IEEE Geosci. Remote Sens. Lett. , vol.3 , Issue.4 , pp. 522-526
    • Guo, B.1    Gunn, S.R.2    Damper, R.3    Nelson, J.4
  • 7
    • 84921030733 scopus 로고    scopus 로고
    • Mutual-information-based semi-supervised hyperspectral band selection with high discrimination, high information, and low redundancy
    • May
    • J. Feng, L. Jiao, F. Liu, T. Sun, and X. Zhang, "Mutual-information-based semi-supervised hyperspectral band selection with high discrimination, high information, and low redundancy," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 2956-2969, May 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.5 , pp. 2956-2969
    • Feng, J.1    Jiao, L.2    Liu, F.3    Sun, T.4    Zhang, X.5
  • 8
    • 79851501337 scopus 로고    scopus 로고
    • Graph-based semi-supervised weighted band selection for classification of hyperspectral data
    • L. Chen, R. Huang, and W. Huang, "Graph-based semi-supervised weighted band selection for classification of hyperspectral data," in Proc. IEEE Int. Conf. Audio Lang. Image Process. (ICALIP), 2010, pp. 1123-1126.
    • (2010) Proc. IEEE Int. Conf. Audio Lang. Image Process. (ICALIP) , pp. 1123-1126
    • Chen, L.1    Huang, R.2    Huang, W.3
  • 9
    • 84902073586 scopus 로고    scopus 로고
    • A discriminative metric learning based anomaly detection method
    • Nov.
    • B. Du and L. Zhang, "A discriminative metric learning based anomaly detection method," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 11, pp. 6844-6857, Nov. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.11 , pp. 6844-6857
    • Du, B.1    Zhang, L.2
  • 10
    • 85027955883 scopus 로고    scopus 로고
    • A hypothesis independent subpixel target detector for hyperspectral images
    • B. Du, Y. Zhang, L. Zhang, and L. Zhang, "A hypothesis independent subpixel target detector for hyperspectral images," Signal Process., vol. 110, pp. 244-249, 2015.
    • (2015) Signal Process. , vol.110 , pp. 244-249
    • Du, B.1    Zhang, Y.2    Zhang, L.3    Zhang, L.4
  • 11
    • 84885022681 scopus 로고    scopus 로고
    • Target detection based on a dynamic subspace
    • B. Du and L. Zhang, "Target detection based on a dynamic subspace," Pattern Recognit., vol. 47, no. 1, pp. 344-358, 2014.
    • (2014) Pattern Recognit. , vol.47 , Issue.1 , pp. 344-358
    • Du, B.1    Zhang, L.2
  • 12
    • 55649124564 scopus 로고    scopus 로고
    • Similarity-based unsupervised band selection for hyperspectral image analysis
    • Oct.
    • Q. Du and H. Yang, "Similarity-based unsupervised band selection for hyperspectral image analysis," IEEE Geosci. Remote Sens. Lett., vol. 5, no. 4, pp. 564-568, Oct. 2008.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , Issue.4 , pp. 564-568
    • Du, Q.1    Yang, H.2
  • 13
    • 0033224770 scopus 로고    scopus 로고
    • A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification
    • Nov.
    • C.-I. Chang, Q. Du, T.-L. Sun, and M. L. Althouse, "A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 6, pp. 2631-2641, Nov. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.6 , pp. 2631-2641
    • Chang, C.-I.1    Du, Q.2    Sun, T.-L.3    Althouse, M.L.4
  • 15
    • 84906307287 scopus 로고    scopus 로고
    • Hyperspectral band selection by multitask sparsity pursuit
    • Feb.
    • Y. Yuan, G. Zhu, and Q. Wang, "Hyperspectral band selection by multitask sparsity pursuit," IEEE Geosci. Remote Sens., vol. 53, no. 2, pp. 631-644, Feb. 2015.
    • (2015) IEEE Geosci. Remote Sens. , vol.53 , Issue.2 , pp. 631-644
    • Yuan, Y.1    Zhu, G.2    Wang, Q.3
  • 16
    • 60849097547 scopus 로고    scopus 로고
    • Normalized mutual information feature selection
    • Feb.
    • P. Estévez et al., "Normalized mutual information feature selection," IEEE Trans. Neural Netw., vol. 20, no. 2, pp. 189-201, Feb. 2009.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.2 , pp. 189-201
    • Estévez, P.1
  • 17
    • 62349118015 scopus 로고    scopus 로고
    • Feature selection with dynamic mutual information
    • H. Liu, J. Sun, L. Liu, and H. Zhang, "Feature selection with dynamic mutual information," Pattern Recog., vol. 42, no. 7, pp. 1330-1339, 2009.
    • (2009) Pattern Recog. , vol.42 , Issue.7 , pp. 1330-1339
    • Liu, H.1    Sun, J.2    Liu, L.3    Zhang, H.4
  • 18
    • 33645690579 scopus 로고    scopus 로고
    • Fast binary feature selection with conditional mutual information
    • F. Fleuret, "Fast binary feature selection with conditional mutual information," J. Mach. Learn. Res., vol. 5, pp. 1531-1555, 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1531-1555
    • Fleuret, F.1
  • 19
    • 84896394026 scopus 로고    scopus 로고
    • Hyperspectral band selection based on trivariate mutual information and clonal selection
    • Jul.
    • J. Feng, L. Jiao, X. Zhang, and T. Sun, "Hyperspectral band selection based on trivariate mutual information and clonal selection," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 7, pp. 4092-4105, Jul. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.7 , pp. 4092-4105
    • Feng, J.1    Jiao, L.2    Zhang, X.3    Sun, T.4
  • 20
  • 21
    • 84994663895 scopus 로고    scopus 로고
    • Hyperspectral imagery classification based on spectral clustering band selection
    • P. Yan-Bin and A. Jie-Qing, "Hyperspectral imagery classification based on spectral clustering band selection," Opto-Electron. Eng., vol. 2, p. 017, 2012.
    • (2012) Opto-Electron. Eng. , vol.2 , pp. 017
    • Yan-Bin, P.1    Jie-Qing, A.2
  • 22
    • 72149111677 scopus 로고    scopus 로고
    • Band selection for hyperspectral imagery using affinity propagation
    • Y. Qian, F. Yao, and S. Jia, "Band selection for hyperspectral imagery using affinity propagation," IET Comput. Vis., vol. 3, no. 4, pp. 213-222, 2009.
    • (2009) IET Comput. Vis. , vol.3 , Issue.4 , pp. 213-222
    • Qian, Y.1    Yao, F.2    Jia, S.3
  • 23
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • B. J. Frey and D. Dueck, "Clustering by passing messages between data points," Science, vol. 315, no. 5814, pp. 972-976, 2007.
    • (2007) Science , vol.315 , Issue.5814 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 24
    • 80255133257 scopus 로고    scopus 로고
    • Semisupervised band clustering for dimensionality reduction of hyperspectral imagery
    • Nov.
    • H. Su, H. Yang, Q. Du, and Y. Sheng, "Semisupervised band clustering for dimensionality reduction of hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 6, pp. 1135-1139, Nov. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.6 , pp. 1135-1139
    • Su, H.1    Yang, H.2    Du, Q.3    Sheng, Y.4
  • 25
    • 85027944659 scopus 로고    scopus 로고
    • Combination of clustering and ranking techniques for unsupervised band selection of hyperspectral images
    • Jun.
    • A. Datta, S. Ghosh, and A. Ghosh, "Combination of clustering and ranking techniques for unsupervised band selection of hyperspectral images," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 6, pp. 2814-2823, Jun. 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.8 , Issue.6 , pp. 2814-2823
    • Datta, A.1    Ghosh, S.2    Ghosh, A.3
  • 26
    • 84902104255 scopus 로고    scopus 로고
    • A fast volume-gradient-based band selection method for hyperspectral image
    • Nov.
    • X. Geng, K. Sun, L. Ji, and Y. Zhao, "A fast volume-gradient-based band selection method for hyperspectral image," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 11, pp. 7111-7119, Nov. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.11 , pp. 7111-7119
    • Geng, X.1    Sun, K.2    Ji, L.3    Zhao, Y.4
  • 27
    • 84899945163 scopus 로고    scopus 로고
    • Logistic regression-based spectral band selection for tree species classification: Effects of spatial scale and balance in training samples
    • Sep.
    • P. Pant, V. Heikkinen, I. Korpela, M. Hauta-Kasari, and T. Tokola, "Logistic regression-based spectral band selection for tree species classification: Effects of spatial scale and balance in training samples," IEEE Geosci. Remote Sens. Lett., vol. 11, no. 9, pp. 1604-1608, Sep. 2014.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.9 , pp. 1604-1608
    • Pant, P.1    Heikkinen, V.2    Korpela, I.3    Hauta-Kasari, M.4    Tokola, T.5
  • 28
    • 84940348822 scopus 로고    scopus 로고
    • Hyperspectral band selection based on parallel particle swarm optimization and impurity function band prioritization schemes
    • Y.-L. Chang, J.-N. Liu, Y.-L. Chen, W.-Y. Chang, T.-J. Hsieh, and B. Huang, "Hyperspectral band selection based on parallel particle swarm optimization and impurity function band prioritization schemes," J. Appl. Remote Sens., vol. 8, no. 1, pp. 084798-084798, 2014.
    • (2014) J. Appl. Remote Sens. , vol.8 , Issue.1 , pp. 084798
    • Chang, Y.-L.1    Liu, J.-N.2    Chen, Y.-L.3    Chang, W.-Y.4    Hsieh, T.-J.5    Huang, B.6
  • 29
    • 80052333825 scopus 로고    scopus 로고
    • Unsupervised hyperspectral band selection using graphics processing units
    • Sep.
    • H. Yang, Q. Du, and G. Chen, "Unsupervised hyperspectral band selection using graphics processing units," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 4, no. 3, pp. 660-668, Sep. 2011.
    • (2011) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.4 , Issue.3 , pp. 660-668
    • Yang, H.1    Du, Q.2    Chen, G.3
  • 30
    • 84861735806 scopus 로고    scopus 로고
    • Unsupervised band selection for hyperspectral imagery classification without manual band removal
    • Apr.
    • S. Jia, Z. Ji, Y. Qian, and L. Shen, "Unsupervised band selection for hyperspectral imagery classification without manual band removal," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 531-543, Apr. 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.5 , Issue.2 , pp. 531-543
    • Jia, S.1    Ji, Z.2    Qian, Y.3    Shen, L.4
  • 31
    • 84905914071 scopus 로고    scopus 로고
    • A new band selection method for hyperspectral image based on data quality
    • Jun.
    • K. Sun, X. Geng, L. Ji, and Y. Lu, "A new band selection method for hyperspectral image based on data quality," IEEE Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2697-2703, Jun. 2014.
    • (2014) IEEE Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.6 , pp. 2697-2703
    • Sun, K.1    Geng, X.2    Ji, L.3    Lu, Y.4
  • 32
    • 1842481516 scopus 로고    scopus 로고
    • Estimation of number of spectrally distinct signal sources in hyperspectral imagery
    • Mar.
    • C.-I. Chang and Q. Du, "Estimation of number of spectrally distinct signal sources in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 608-619, Mar. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.3 , pp. 608-619
    • Chang, C.-I.1    Du, Q.2
  • 33
    • 0022808786 scopus 로고
    • A computational approach to edge detection
    • Nov.
    • J. Canny, "A computational approach to edge detection," IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-8, no. 6, pp. 679-698, Nov. 1986.
    • (1986) IEEE Trans. Pattern Anal. Mach. Intell. , vol.PAMI-8 , Issue.6 , pp. 679-698
    • Canny, J.1
  • 34
    • 84898033451 scopus 로고    scopus 로고
    • Knowledge discovery by accuracy maximization
    • S. Cacciatore, C. Luchinat, and L. Tenori, "Knowledge discovery by accuracy maximization," Proc. Nat. Acad. Sci., vol. 111, no. 14, pp. 5117-5122, 2014.
    • (2014) Proc. Nat. Acad. Sci. , vol.111 , Issue.14 , pp. 5117-5122
    • Cacciatore, S.1    Luchinat, C.2    Tenori, L.3
  • 35
    • 85027919418 scopus 로고    scopus 로고
    • Exemplar component analysis: A fast band selection method for hyperspectral imagery
    • May
    • K. Sun, X. Geng, and L. Ji, "Exemplar component analysis: A fast band selection method for hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 12, no. 5, pp. 998-1002, May 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.5 , pp. 998-1002
    • Sun, K.1    Geng, X.2    Ji, L.3
  • 36
    • 84859039535 scopus 로고    scopus 로고
    • A new statistical approach for band clustering and band selection using K-means clustering
    • M. Ahmad, D. I. U. Haq, Q. Mushtaq, and D. K. Bhatti, "A new statistical approach for band clustering and band selection using K-means clustering," IACSIT Int. J. Eng. Technol., vol. 3, no. 6, pp. 606-614, 2011.
    • (2011) IACSIT Int. J. Eng. Technol. , vol.3 , Issue.6 , pp. 606-614
    • Ahmad, M.1    Haq, D.I.U.2    Mushtaq, Q.3    Bhatti, D.K.4
  • 37
    • 56349158295 scopus 로고    scopus 로고
    • A simple and fast algorithm for K-medoids clustering
    • H.-S. Park and C.-H. Jun, "A simple and fast algorithm for K-medoids clustering," Expert Syst. Appl., vol. 36, no. 2, pp. 3336-3341, 2009.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.2 , pp. 3336-3341
    • Park, H.-S.1    Jun, C.-H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.