-
1
-
-
0000874557
-
Theoretical foundations of the potential function method in pattern recognition learning
-
M. A. Aizerman, É. M. Braverman, and L. I. Rozonoér. Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control, 25:821-837, 1964.
-
(1964)
Automation and Remote Control
, vol.25
, pp. 821-837
-
-
Aizerman, M.A.1
Braverman, É.M.2
Rozonoér, L.I.3
-
3
-
-
0032167175
-
The minimax distortion redundancy in empirical quantizer design
-
P. Bartlett, T. Linder, and G. Lugosi. The minimax distortion redundancy in empirical quantizer design. IEEE Transactions on Information Theory, 44(5):1802-1813, 1998.
-
(1998)
IEEE Transactions on Information Theory
, vol.44
, Issue.5
, pp. 1802-1813
-
-
Bartlett, P.1
Linder, T.2
Lugosi, G.3
-
4
-
-
0002935122
-
Combining support vector and mathematical programming methods for induction
-
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Cambridge, MA, MIT Press
-
K. Bennett. Combining support vector and mathematical programming methods for induction. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - SV Learning, pages 307-326, Cambridge, MA, 1999. MIT Press.
-
(1999)
Advances in Kernel Methods - SV Learning
, pp. 307-326
-
-
Bennett, K.1
-
5
-
-
0001740650
-
Training with noise is equivalent to Tikhonov regularization
-
C. M. Bishop. Training with noise is equivalent to Tikhonov regularization. Neural Computation, 7:108-116, 1995.
-
(1995)
Neural Computation
, vol.7
, pp. 108-116
-
-
Bishop, C.M.1
-
6
-
-
0347963789
-
GTM: The generative topographic mapping
-
C. M. Bishop, M. Svensén, and C. K. I. Williams. GTM: The generative topographic mapping. Neural Computation, 10(1):215-234, 1998.
-
(1998)
Neural Computation
, vol.10
, Issue.1
, pp. 215-234
-
-
Bishop, C.M.1
Svensén, M.2
Williams, C.K.I.3
-
7
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
D. Haussler, editor, Pittsburgh, PA, July ACM Press
-
B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifiers. In D. Haussler, editor, Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, pages 144-152, Pittsburgh, PA, July 1992. ACM Press.
-
(1992)
Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
8
-
-
0003973116
-
Massive data discrimination via linear suppport vector machines
-
University of Wisconsin Madison
-
P. Bradley and O. Mangasarian. Massive data discrimination via linear suppport vector machines. Mathematical Programming Technical Report 98-05, University of Wisconsin Madison, 1998.
-
(1998)
Mathematical Programming Technical Report
, vol.98
, Issue.5
-
-
Bradley, P.1
Mangasarian, O.2
-
9
-
-
84898974025
-
Clustering via concave minimization
-
Cambridge, MA, MIT Press
-
P. S. Bradley, O. L. Mangasarian, and W. N. Street. Clustering via concave minimization. In Advances in Neural Information Processing Systems, volume 9, pages 368-374, Cambridge, MA, 1997. MIT Press.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 368-374
-
-
Bradley, P.S.1
Mangasarian, O.L.2
Street, W.N.3
-
10
-
-
0004148979
-
-
Cambridge University Press, Cambridge, UK
-
B. Carl and I. Stephani. Entropy, compactness, and the approximation of operators. Cambridge University Press, Cambridge, UK, 1990.
-
(1990)
Entropy, Compactness, and the Approximation of Operators
-
-
Carl, B.1
Stephani, I.2
-
11
-
-
0032131292
-
Atomic decomposition by basis pursuit
-
S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by basis pursuit. Siam Journal of Scientific Computing, 20(1):33-61, 1999.
-
(1999)
Siam Journal of Scientific Computing
, vol.20
, Issue.1
, pp. 33-61
-
-
Chen, S.1
Donoho, D.2
Saunders, M.3
-
12
-
-
0002629270
-
Maximum Likelihood from Incomplete Data via the EM Algorithm
-
A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society B, 39(1):1-22, 1977.
-
(1977)
Journal of the Royal Statistical Society B
, vol.39
, Issue.1
, pp. 1-22
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
15
-
-
0000249788
-
An equivalence between sparse approximation and support vector machines
-
F. Girosi. An equivalence between sparse approximation and support vector machines. Neural Computation, 10(6):1455-1480, 1998.
-
(1998)
Neural Computation
, vol.10
, Issue.6
, pp. 1455-1480
-
-
Girosi, F.1
-
16
-
-
0001219859
-
Regularization theory and neural networks architectures
-
F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks architectures. Neural Computation, 7(2):219-269, 1995.
-
(1995)
Neural Computation
, vol.7
, Issue.2
, pp. 219-269
-
-
Girosi, F.1
Jones, M.2
Poggio, T.3
-
17
-
-
84953657117
-
-
Addison Wesley, Reading, MA, 2 edition, Reprint by Dover, New York, NY
-
M. Hamermesh. Group theory and its applications to physical problems. Addison Wesley, Reading, MA, 2 edition, 1962. Reprint by Dover, New York, NY.
-
(1962)
Group Theory and Its Applications to Physical Problems
-
-
Hamermesh, M.1
-
19
-
-
0004262735
-
-
John Wiley and Sons, New York
-
P. J. Huber. Robust Statistics. John Wiley and Sons, New York, 1981.
-
(1981)
Robust Statistics
-
-
Huber, P.J.1
-
20
-
-
2142669059
-
IBM optimization subroutine library guide and reference
-
IBM Corporation. IBM optimization subroutine library guide and reference. IBM Systems Journal, 31, 1992. SC23-0519.
-
(1992)
IBM Systems Journal
, vol.31
-
-
-
21
-
-
0003317812
-
Fast non-linear dimension reduction
-
J. D. Cowan, G. Tesauro, and J. Alspector, editors, San Francisco, CA, Morgan Kaufmann
-
N. Kambhatla and T. K. Leen. Fast non-linear dimension reduction. In J. D. Cowan, G. Tesauro, and J. Alspector, editors, Advances in Neural Information Processing Systems 6. Proceedings of the 1993 Conference, pages 152-159, San Francisco, CA, 1994. Morgan Kaufmann.
-
(1994)
Advances in Neural Information Processing Systems 6. Proceedings of the 1993 Conference
, pp. 152-159
-
-
Kambhatla, N.1
Leen, T.K.2
-
22
-
-
0348139702
-
Dimension reduction by local principal component analysis
-
N. Kambhatla and T. K. Leen. Dimension reduction by local principal component analysis. Neural Computation, 9(7):1493-1516, 1997.
-
(1997)
Neural Computation
, vol.9
, Issue.7
, pp. 1493-1516
-
-
Kambhatla, N.1
Leen, T.K.2
-
23
-
-
0033705963
-
Learning and design of principal curves
-
B. Kégl, A. Krzyzak, T. Linder, and K. Zeger. Learning and design of principal curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 281-297, 2000.
-
(2000)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, pp. 281-297
-
-
Kégl, B.1
Krzyzak, A.2
Linder, T.3
Zeger, K.4
-
24
-
-
0015000439
-
Some results on Tchebycheffian spline functions
-
G. S. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions. J. Math. Anal Applic., 33:82-95, 1971.
-
(1971)
J. Math. Anal Applic.
, vol.33
, pp. 82-95
-
-
Kimeldorf, G.S.1
Wahba, G.2
-
25
-
-
0020102027
-
Least squares quantization in PCM
-
S. P. Lloyd. Least squares quantization in PCM. IEEE Trans. Information Theory, 28:129-137, 1982.
-
(1982)
IEEE Trans. Information Theory
, vol.28
, pp. 129-137
-
-
Lloyd, S.P.1
-
27
-
-
0001500115
-
Functions of positive and negative type and their connection with the theory of integral equations
-
J. Mercer. Functions of positive and negative type and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society, London, A 209:415-446, 1909.
-
(1909)
Philosophical Transactions of the Royal Society, London, A
, vol.209
, pp. 415-446
-
-
Mercer, J.1
-
29
-
-
0003446306
-
-
Technical Report SOL 83-20R, Stanford University, CA, USA, Revised
-
B. A. Murtagh and M. A. Saunders. MINOS 5.1 user's guide. Technical Report SOL 83-20R, Stanford University, CA, USA, 1983. Revised 1987.
-
(1983)
MINOS 5.1 User's Guide
-
-
Murtagh, B.A.1
Saunders, M.A.2
-
30
-
-
0004161838
-
-
Cambridge University Press, Cambridge, ISBN 0-521-43108-5
-
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C: The Art of Scientific Computing (2nd ed.). Cambridge University Press, Cambridge, 1992. ISBN 0-521-43108-5.
-
(1992)
Numerical Recipes in C: the Art of Scientific Computing (2nd Ed.)
-
-
Press, W.H.1
Teukolsky, S.A.2
Vetterling, W.T.3
Flannery, B.P.4
-
31
-
-
0033556862
-
A unifying review of linear gaussian models
-
S. Roweis and Z. Ghahramani. A unifying review of linear gaussian models. Neural Computation, 11(2), 1999.
-
(1999)
Neural Computation
, vol.11
, Issue.2
-
-
Roweis, S.1
Ghahramani, Z.2
-
32
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10:1299-1319, 1998.
-
(1998)
Neural Computation
, vol.10
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.2
Müller, K.-R.3
-
33
-
-
0032098361
-
The connection between regularization operators and support vector kernels
-
A. Smola, B. Schölkopf, and K.-R. Müller. The connection between regularization operators and support vector kernels. Neural Networks, 11:637-649, 1998.
-
(1998)
Neural Networks
, vol.11
, pp. 637-649
-
-
Smola, A.1
Schölkopf, B.2
Müller, K.-R.3
-
34
-
-
0004094721
-
-
PhD thesis, Technische Universität Berlin, GMD Research Series No. 25
-
A. J. Smola. Learning with Kernels. PhD thesis, Technische Universität Berlin, 1998. GMD Research Series No. 25.
-
(1998)
Learning with Kernels
-
-
Smola, A.J.1
-
35
-
-
0003093256
-
Entropy numbers for convex combinations and MLPs
-
A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Cambridge, MA, MIT Press
-
A. J. Smola, A. Elisseeff, B. Schölkopf, and R. C. Williamson. Entropy numbers for convex combinations and MLPs. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 369-387, Cambridge, MA, 2000. MIT Press.
-
(2000)
Advances in Large Margin Classifiers
, pp. 369-387
-
-
Smola, A.J.1
Elisseeff, A.2
Schölkopf, B.3
Williamson, R.C.4
-
37
-
-
0003664630
-
-
Technical Report SOR-9708, Princeton University, Statistics and Operations Research
-
R. J. Vanderbei. LOQO user's manual -version 3.10. Technical Report SOR-9708, Princeton University, Statistics and Operations Research, 1997. Code available at http://www.princeton.edu/̃rvdb/.
-
(1997)
LOQO User's Manual -Version 3.10
-
-
Vanderbei, R.J.1
-
40
-
-
0038831103
-
Smoothing and ill-posed problems
-
M. Golberg, editor, Plenum Press, New York
-
G. Wahba. Smoothing and ill-posed problems. In M. Golberg, editor, Solutions methods for integral equations and applications, pages 183-194. Plenum Press, New York, 1979.
-
(1979)
Solutions Methods for Integral Equations and Applications
, pp. 183-194
-
-
Wahba, G.1
-
42
-
-
0001873884
-
Support vector density estimation
-
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Cambridge, MA, MIT Press
-
J. Weston, A. Gammerman, M. Stitson, V. Vapnik, V. Vovk, and C. Watkins. Support vector density estimation. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods -Support Vector Learning, pages 293-306, Cambridge, MA, 1999. MIT Press.
-
(1999)
Advances in Kernel Methods -Support Vector Learning
, pp. 293-306
-
-
Weston, J.1
Gammerman, A.2
Stitson, M.3
Vapnik, V.4
Vovk, V.5
Watkins, C.6
-
43
-
-
0003017575
-
Prediction with Gaussian processes: From linear regression to linear prediction and beyond
-
M. I. Jordan, editor, Kluwer
-
C. K. I. Williams. Prediction with Gaussian processes: From linear regression to linear prediction and beyond. In M. I. Jordan, editor, Learning and Inference in Graphical Models. Kluwer, 1998.
-
(1998)
Learning and Inference in Graphical Models
-
-
Williams, C.K.I.1
|