메뉴 건너뛰기




Volumn 1, Issue 3, 2001, Pages 179-209

Regularized Principal Manifolds

Author keywords

Clustering; Entropy numbers; Generative topographic map; Kernel pca; Kernels; Principal curves; Regularization; Support vector machines; Uniform convergence

Indexed keywords


EID: 0037845137     PISSN: 15324435     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (82)

References (45)
  • 1
    • 0000874557 scopus 로고
    • Theoretical foundations of the potential function method in pattern recognition learning
    • M. A. Aizerman, É. M. Braverman, and L. I. Rozonoér. Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control, 25:821-837, 1964.
    • (1964) Automation and Remote Control , vol.25 , pp. 821-837
    • Aizerman, M.A.1    Braverman, É.M.2    Rozonoér, L.I.3
  • 3
    • 0032167175 scopus 로고    scopus 로고
    • The minimax distortion redundancy in empirical quantizer design
    • P. Bartlett, T. Linder, and G. Lugosi. The minimax distortion redundancy in empirical quantizer design. IEEE Transactions on Information Theory, 44(5):1802-1813, 1998.
    • (1998) IEEE Transactions on Information Theory , vol.44 , Issue.5 , pp. 1802-1813
    • Bartlett, P.1    Linder, T.2    Lugosi, G.3
  • 4
    • 0002935122 scopus 로고    scopus 로고
    • Combining support vector and mathematical programming methods for induction
    • B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Cambridge, MA, MIT Press
    • K. Bennett. Combining support vector and mathematical programming methods for induction. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - SV Learning, pages 307-326, Cambridge, MA, 1999. MIT Press.
    • (1999) Advances in Kernel Methods - SV Learning , pp. 307-326
    • Bennett, K.1
  • 5
    • 0001740650 scopus 로고
    • Training with noise is equivalent to Tikhonov regularization
    • C. M. Bishop. Training with noise is equivalent to Tikhonov regularization. Neural Computation, 7:108-116, 1995.
    • (1995) Neural Computation , vol.7 , pp. 108-116
    • Bishop, C.M.1
  • 8
    • 0003973116 scopus 로고    scopus 로고
    • Massive data discrimination via linear suppport vector machines
    • University of Wisconsin Madison
    • P. Bradley and O. Mangasarian. Massive data discrimination via linear suppport vector machines. Mathematical Programming Technical Report 98-05, University of Wisconsin Madison, 1998.
    • (1998) Mathematical Programming Technical Report , vol.98 , Issue.5
    • Bradley, P.1    Mangasarian, O.2
  • 15
    • 0000249788 scopus 로고    scopus 로고
    • An equivalence between sparse approximation and support vector machines
    • F. Girosi. An equivalence between sparse approximation and support vector machines. Neural Computation, 10(6):1455-1480, 1998.
    • (1998) Neural Computation , vol.10 , Issue.6 , pp. 1455-1480
    • Girosi, F.1
  • 16
    • 0001219859 scopus 로고
    • Regularization theory and neural networks architectures
    • F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks architectures. Neural Computation, 7(2):219-269, 1995.
    • (1995) Neural Computation , vol.7 , Issue.2 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 19
  • 20
    • 2142669059 scopus 로고
    • IBM optimization subroutine library guide and reference
    • IBM Corporation. IBM optimization subroutine library guide and reference. IBM Systems Journal, 31, 1992. SC23-0519.
    • (1992) IBM Systems Journal , vol.31
  • 22
    • 0348139702 scopus 로고    scopus 로고
    • Dimension reduction by local principal component analysis
    • N. Kambhatla and T. K. Leen. Dimension reduction by local principal component analysis. Neural Computation, 9(7):1493-1516, 1997.
    • (1997) Neural Computation , vol.9 , Issue.7 , pp. 1493-1516
    • Kambhatla, N.1    Leen, T.K.2
  • 24
    • 0015000439 scopus 로고
    • Some results on Tchebycheffian spline functions
    • G. S. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions. J. Math. Anal Applic., 33:82-95, 1971.
    • (1971) J. Math. Anal Applic. , vol.33 , pp. 82-95
    • Kimeldorf, G.S.1    Wahba, G.2
  • 25
    • 0020102027 scopus 로고
    • Least squares quantization in PCM
    • S. P. Lloyd. Least squares quantization in PCM. IEEE Trans. Information Theory, 28:129-137, 1982.
    • (1982) IEEE Trans. Information Theory , vol.28 , pp. 129-137
    • Lloyd, S.P.1
  • 27
    • 0001500115 scopus 로고
    • Functions of positive and negative type and their connection with the theory of integral equations
    • J. Mercer. Functions of positive and negative type and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society, London, A 209:415-446, 1909.
    • (1909) Philosophical Transactions of the Royal Society, London, A , vol.209 , pp. 415-446
    • Mercer, J.1
  • 29
    • 0003446306 scopus 로고
    • Technical Report SOL 83-20R, Stanford University, CA, USA, Revised
    • B. A. Murtagh and M. A. Saunders. MINOS 5.1 user's guide. Technical Report SOL 83-20R, Stanford University, CA, USA, 1983. Revised 1987.
    • (1983) MINOS 5.1 User's Guide
    • Murtagh, B.A.1    Saunders, M.A.2
  • 31
    • 0033556862 scopus 로고    scopus 로고
    • A unifying review of linear gaussian models
    • S. Roweis and Z. Ghahramani. A unifying review of linear gaussian models. Neural Computation, 11(2), 1999.
    • (1999) Neural Computation , vol.11 , Issue.2
    • Roweis, S.1    Ghahramani, Z.2
  • 32
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10:1299-1319, 1998.
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.-R.3
  • 33
    • 0032098361 scopus 로고    scopus 로고
    • The connection between regularization operators and support vector kernels
    • A. Smola, B. Schölkopf, and K.-R. Müller. The connection between regularization operators and support vector kernels. Neural Networks, 11:637-649, 1998.
    • (1998) Neural Networks , vol.11 , pp. 637-649
    • Smola, A.1    Schölkopf, B.2    Müller, K.-R.3
  • 34
    • 0004094721 scopus 로고    scopus 로고
    • PhD thesis, Technische Universität Berlin, GMD Research Series No. 25
    • A. J. Smola. Learning with Kernels. PhD thesis, Technische Universität Berlin, 1998. GMD Research Series No. 25.
    • (1998) Learning with Kernels
    • Smola, A.J.1
  • 35
    • 0003093256 scopus 로고    scopus 로고
    • Entropy numbers for convex combinations and MLPs
    • A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Cambridge, MA, MIT Press
    • A. J. Smola, A. Elisseeff, B. Schölkopf, and R. C. Williamson. Entropy numbers for convex combinations and MLPs. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 369-387, Cambridge, MA, 2000. MIT Press.
    • (2000) Advances in Large Margin Classifiers , pp. 369-387
    • Smola, A.J.1    Elisseeff, A.2    Schölkopf, B.3    Williamson, R.C.4
  • 37
    • 0003664630 scopus 로고    scopus 로고
    • Technical Report SOR-9708, Princeton University, Statistics and Operations Research
    • R. J. Vanderbei. LOQO user's manual -version 3.10. Technical Report SOR-9708, Princeton University, Statistics and Operations Research, 1997. Code available at http://www.princeton.edu/̃rvdb/.
    • (1997) LOQO User's Manual -Version 3.10
    • Vanderbei, R.J.1
  • 40
    • 0038831103 scopus 로고
    • Smoothing and ill-posed problems
    • M. Golberg, editor, Plenum Press, New York
    • G. Wahba. Smoothing and ill-posed problems. In M. Golberg, editor, Solutions methods for integral equations and applications, pages 183-194. Plenum Press, New York, 1979.
    • (1979) Solutions Methods for Integral Equations and Applications , pp. 183-194
    • Wahba, G.1
  • 43
    • 0003017575 scopus 로고    scopus 로고
    • Prediction with Gaussian processes: From linear regression to linear prediction and beyond
    • M. I. Jordan, editor, Kluwer
    • C. K. I. Williams. Prediction with Gaussian processes: From linear regression to linear prediction and beyond. In M. I. Jordan, editor, Learning and Inference in Graphical Models. Kluwer, 1998.
    • (1998) Learning and Inference in Graphical Models
    • Williams, C.K.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.