메뉴 건너뛰기




Volumn 2015-August, Issue , 2015, Pages 1909-1918

A machine learning framework to identify students at risk of adverse academic outcomes

Author keywords

Applications; Education; Evaluation metrics; Risk prediction

Indexed keywords

APPLICATIONS; ARTIFICIAL INTELLIGENCE; DATA MINING; EDUCATION; LEARNING SYSTEMS; STUDENTS;

EID: 84954107846     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2783258.2788620     Document Type: Conference Paper
Times cited : (135)

References (31)
  • 1
    • 84954177280 scopus 로고    scopus 로고
    • Building a Grad Nation. http://www.americaspromise.org/sites/default/files/legacy/bodyfiles/BuildingAGradNation2012.pdf.
    • Building a Grad Nation
  • 2
    • 84970877609 scopus 로고    scopus 로고
    • Engagement vs performance: Using electronic portfolios to predict first semester engineering student persistence
    • E. Aguiar, G. A. Ambrose, N. V. Chawla, V. Goodrich, and J. Brockman. Engagement vs performance: Using electronic portfolios to predict first semester engineering student persistence. Journal of Learning Analytics, 1(3), 2014.
    • (2014) Journal of Learning Analytics , vol.1 , Issue.3
    • Aguiar, E.1    Ambrose, G.A.2    Chawla, N.V.3    Goodrich, V.4    Brockman, J.5
  • 6
    • 37649021053 scopus 로고    scopus 로고
    • Preventing student disengagement and keeping students on the graduation path in urban middle-grades schools: Early identification and effective interventions
    • R. Balfanz, L. Herzog, and D. J. Mac Iver. Preventing student disengagement and keeping students on the graduation path in urban middle-grades schools: Early identification and effective interventions. Educational Psychologist, 42(4), 2007.
    • (2007) Educational Psychologist , vol.42 , Issue.4
    • Balfanz, R.1    Herzog, L.2    MacIver, D.J.3
  • 7
    • 84865233525 scopus 로고    scopus 로고
    • Why tenth graders fail to finish high school: Dropout typology latent class analysis
    • A. J. Bowers and R. Sprott. Why tenth graders fail to finish high school: Dropout typology latent class analysis. Journal of Education for Students Placed at Risk, 17(3), 2012.
    • (2012) Journal of Education for Students Placed at Risk , vol.17 , Issue.3
    • Bowers, A.J.1    Sprott, R.2
  • 8
    • 84920549036 scopus 로고    scopus 로고
    • Do we know who will drop out?: A review of the predictors of dropping out of high school: Precision, sensitivity, and specificity
    • A. J. Bowers, R. Sprott, and S. A. Taff. Do we know who will drop out?: A review of the predictors of dropping out of high school: Precision, sensitivity, and specificity. The High School Journal, 96(2), 2013.
    • (2013) The High School Journal , vol.96 , Issue.2
    • Bowers, A.J.1    Sprott, R.2    Taff, S.A.3
  • 9
  • 12
    • 84919831940 scopus 로고    scopus 로고
    • Identifying at-risk students using machine learning techniques: A case study with is 100
    • E. Er. Identifying at-risk students using machine learning techniques: A case study with is 100. International Journal of Machine Learning and Computing(IJMLC), 2(4), 2012.
    • (2012) International Journal of Machine Learning and Computing(IJMLC) , vol.2 , Issue.4
    • Er, E.1
  • 13
    • 0035621112 scopus 로고    scopus 로고
    • School dropout as predicted by peer rejection and antisocial behavior
    • D. C. French and J. Conrad. School dropout as predicted by peer rejection and antisocial behavior. Journal of Research on Adolescence, 11(3), 2001.
    • (2001) Journal of Research on Adolescence , vol.11 , Issue.3
    • French, D.C.1    Conrad, J.2
  • 14
    • 0039253846 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation
    • ACM
    • J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In ACM SIGMOD Record, Volume 29. ACM, 2000.
    • (2000) ACM SIGMOD Record , vol.29
    • Han, J.1    Pei, J.2    Yin, Y.3
  • 15
    • 85084014309 scopus 로고    scopus 로고
    • Predicting future learning better using quantitative analysis of moment-by-moment learning
    • A. Hershkovitz, R. Baker, S. M. Gowda, and A. T. Corbett. Predicting future learning better using quantitative analysis of moment-by-moment learning. In Educational Data Mining, 2013.
    • (2013) Educational Data Mining
    • Hershkovitz, A.1    Baker, R.2    Gowda, S.M.3    Corbett, A.T.4
  • 19
    • 34548160247 scopus 로고    scopus 로고
    • A note on platt's probabilistic outputs for support vector machines
    • H.-T. Lin, C.-J. Lin, and R. C. Weng. A note on platt's probabilistic outputs for support vector machines. Machine learning, 68(3), 2007.
    • (2007) Machine Learning , vol.68 , Issue.3
    • Lin, H.-T.1    Lin, C.-J.2    Weng, R.C.3
  • 20
    • 69249119464 scopus 로고    scopus 로고
    • Learning to rank for information retrieval
    • T.-Y. Liu. Learning to rank for information retrieval. Found. Trends Inf. Retr., 3(3), 2009.
    • (2009) Found. Trends Inf. Retr. , vol.3 , Issue.3
    • Liu, T.-Y.1
  • 22
    • 84970893677 scopus 로고    scopus 로고
    • Comparison of data mining techniques used to predict student retention
    • K. Pittman. Comparison of data mining techniques used to predict student retention. ProQuest, 2008.
    • (2008) ProQuest
    • Pittman, K.1
  • 23
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J. Quinlan. Induction of decision trees. Machine Learning, 1(1), 1986.
    • (1986) Machine Learning , vol.1 , Issue.1
    • Quinlan, J.1
  • 25
    • 84890012859 scopus 로고    scopus 로고
    • Predicting high school graduation and college enrollment: Comparing early warning indicator data and teacher intuition
    • J. Soland. Predicting high school graduation and college enrollment: Comparing early warning indicator data and teacher intuition. Journal of Education for Students Placed at Risk, 18, 2013.
    • (2013) Journal of Education for Students Placed at Risk , vol.18
    • Soland, J.1
  • 28
    • 84869120243 scopus 로고    scopus 로고
    • U.S. Department of Education, National Center for Education Statistics. The condition of education. 2014.
    • (2014) The Condition of Education


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.