메뉴 건너뛰기




Volumn , Issue , 2015, Pages 1-297

Probabilistic forecasting and bayesian data assimilation

Author keywords

[No Author keywords available]

Indexed keywords

DYNAMICAL SYSTEMS; ENGINEERING EDUCATION; FORECASTING; KALMAN FILTERS; STUDENTS; VARIATIONAL TECHNIQUES;

EID: 84953382137     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1017/CBO9781107706804     Document Type: Book
Times cited : (390)

References (115)
  • 1
  • 2
    • 34247642674 scopus 로고    scopus 로고
    • An adaptive covariance inflation error correction algorithm for ensemble filters
    • Anderson, J. (2007), ‘An adaptive covariance inflation error correction algorithm for ensemble filters’, Tellus 59A, 210-224.
    • (2007) Tellus , vol.59A , pp. 210-224
    • Anderson, J.1
  • 3
    • 78650184482 scopus 로고    scopus 로고
    • A non-gaussian ensemble filter update for data assimilation
    • Anderson, J. (2010), ‘A non-Gaussian ensemble filter update for data assimilation’, Mon. Wea. Rev. 138, 4186-4198.
    • (2010) Mon. Wea. Rev , vol.138 , pp. 4186-4198
    • Anderson, J.1
  • 4
    • 84864864640 scopus 로고    scopus 로고
    • Localization and sampling error correction in ensemble kalman filter data assimilation
    • Anderson, J. (2012), ‘Localization and sampling error correction in ensemble Kalman filter data assimilation’, Mon. Wea. Rev. 140, 2359-2371.
    • (2012) Mon. Wea. Rev , vol.140 , pp. 2359-2371
    • Anderson, J.1
  • 5
    • 60149103563 scopus 로고    scopus 로고
    • The pseudo-marginal approach for efficient montecarlo computations
    • Andrieu, C. & Roberts, G. (2009), ‘The pseudo-marginal approach for efficient MonteCarlo computations’, Ann. Statist. 37, 697-725.
    • (2009) Ann. Statist , vol.37 , pp. 697-725
    • Andrieu, C.1    Roberts, G.2
  • 7
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking
    • Arulampalam, M., Maskell, S., Gordon, N. & Clapp, T. (2002), ‘A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking’, IEEE Trans. Sign. Process. 50, 174-188.
    • (2002) IEEE Trans. Sign. Process , vol.50 , pp. 174-188
    • Arulampalam, M.1    Maskell, S.2    Gordon, N.3    Clapp, T.4
  • 9
    • 75249093579 scopus 로고    scopus 로고
    • ofStochastic Modelling and Applied Probability, Springer-Verlag, New York
    • Bain, A. & Crisan, D. (2009), Fundamentals of Stochastic Filtering, Vol. 60 of Stochastic Modelling and Applied Probability, Springer-Verlag, New York.
    • (2009) Fundamentals of Stochastic Filtering , vol.60
    • Bain, A.1    Crisan, D.2
  • 10
    • 0043210659 scopus 로고    scopus 로고
    • Estimation of population growth or decline in genetically monitored populations
    • Beaumont, M. (2003), ‘Estimation of population growth or decline in genetically monitored populations’, Genetics 164, 1139-1160.
    • (2003) Genetics , vol.164 , pp. 1139-1160
    • Beaumont, M.1
  • 11
    • 0034407460 scopus 로고    scopus 로고
    • A computational fluid mechanics solution to the monge-kantorovitch mass transfer problem
    • Benamou, J. & Brenier, Y. (2000), ‘A computational fluid mechanics solution to the Monge-Kantorovitch mass transfer problem’, Numer. Math. 84, 375-393.
    • (2000) Numer. Math , vol.84 , pp. 375-393
    • Benamou, J.1    Brenier, Y.2
  • 13
    • 77957105914 scopus 로고    scopus 로고
    • A mollified ensemble kalman filter
    • Bergemann, K. & Reich, S. (2010), ‘A mollified ensemble Kalman filter’, Q.J.R. Mete-orolog. Soc. 136, 1636-1643.
    • (2010) Q.J.R. Mete-Orolog. Soc , vol.136 , pp. 1636-1643
    • Bergemann, K.1    Reich, S.2
  • 14
    • 84874607919 scopus 로고    scopus 로고
    • An ensemble kalman-bucy filter for continuous data assimilation
    • Bergemann, K. & Reich, S. (2012), ‘An ensemble Kalman-Bucy filter for continuous data assimilation’, Meteorolog. Zeitschrift 21, 213-219.
    • (2012) Meteorolog. Zeitschrift , vol.21 , pp. 213-219
    • Bergemann, K.1    Reich, S.2
  • 15
    • 0000112970 scopus 로고    scopus 로고
    • Data assimilation using incremental analysis updates
    • Bloom, S., Takacs, L., Silva, A.D. & Ledvina, D. (1996), ‘Data assimilation using incremental analysis updates’, Q.J.R. Meteorolog. Soc. 124, 1256-1271.
    • (1996) Q.J.R. Meteorolog. Soc , vol.124 , pp. 1256-1271
    • Bloom, S.1    Takacs, L.2    Silva, A.D.3    Ledvina, D.4
  • 16
    • 84863313070 scopus 로고    scopus 로고
    • Combining inflation-free and iterative ensemble kalman filters for strongly nonlinear systems
    • Bocquet, M. & Sakov, P. (2012), ‘Combining inflation-free and iterative ensemble Kalman filters for strongly nonlinear systems’, Nonlin. Processes Geophys. 19, 383-399.
    • (2012) Nonlin. Processes Geophys , vol.19 , pp. 383-399
    • Bocquet, M.1    Sakov, P.2
  • 17
    • 77955429089 scopus 로고    scopus 로고
    • Beyond gaussian statistical modeling in geophysical data assimilaition
    • Bocquet, M., Pires, C. & Wu, L. (2010), ‘Beyond Gaussian statistical modeling in geophysical data assimilaition’, Mon. Wea. Rev. 138, 2997-3022.
    • (2010) Mon. Wea. Rev , vol.138 , pp. 2997-3022
    • Bocquet, M.1    Pires, C.2    Wu, L.3
  • 19
    • 84866159248 scopus 로고    scopus 로고
    • Evaluating raw ensembles with the continuous ranked probability score
    • Bröcker, J. (2012), ‘Evaluating raw ensembles with the continuous ranked probability score’, Q.J.R. Meteorolog. Soc. 138, 1611-1617.
    • (2012) Q.J.R. Meteorolog. Soc , vol.138 , pp. 1611-1617
    • Bröcker, J.1
  • 21
    • 85011514513 scopus 로고    scopus 로고
    • Monte carlo and quasi-monte carlo methods
    • Caflisch, R. (1998), ‘Monte Carlo and Quasi-Monte Carlo methods’, Acta Numerica 7, 1-49.
    • (1998) Acta Numerica , vol.7 , pp. 1-49
    • Caflisch, R.1
  • 22
    • 84880060911 scopus 로고    scopus 로고
    • Levenberg-marquardt forms of the iterative ensemble smoother for efficient history matching and uncertainty quantification
    • Chen, Y. & Oliver, D. (2013), ‘Levenberg-Marquardt forms of the iterative ensemble smoother for efficient history matching and uncertainty quantification’, Computational Geoscience 17, 689-703.
    • (2013) Computational Geoscience , vol.17 , pp. 689-703
    • Chen, Y.1    Oliver, D.2
  • 28
    • 76849109369 scopus 로고    scopus 로고
    • Approximate mckean-vlasov representation for a class of spdes
    • Crisan, D. & Xiong, J. (2010), ‘Approximate McKean-Vlasov representation for a class of SPDEs’, Stochastics 82, 53-68.
    • (2010) Stochastics , vol.82 , pp. 53-68
    • Crisan, D.1    Xiong, J.2
  • 29
  • 33
    • 84875881109 scopus 로고    scopus 로고
    • Ensemble smoother with multiple data assimilation
    • Emerik, A. & Reynolds, A. (2012), ‘Ensemble smoother with multiple data assimilation’, Computers & Geosciences 55, 3-15.
    • (2012) Computers & Geosciences , vol.55 , pp. 3-15
    • Emerik, A.1    Reynolds, A.2
  • 35
    • 0003448545 scopus 로고    scopus 로고
    • American Mathematical Society, Providence, RI
    • Evans, L. (1998), Partial Differential Equations, American Mathematical Society, Providence, RI.
    • (1998) Partial Differential Equations
    • Evans, L.1
  • 40
    • 33847399672 scopus 로고    scopus 로고
    • Probabilistic forecasts, calibration and sharpness
    • Gneiting, T., Balabdaoui, F. & Raftery, A. (2007), ‘Probabilistic forecasts, calibration and sharpness’, J. R. Statist. Soc. B 69, 243-268.
    • (2007) J. R. Statist. Soc. B , vol.69 , pp. 243-268
    • Gneiting, T.1    Balabdaoui, F.2    Raftery, A.3
  • 41
    • 0004236492 scopus 로고    scopus 로고
    • 3rd edn, Johns Hopkins University Press, Baltimore, MD
    • Golub, G. & Loan, C.V. (1996), Matrix Computations, 3rd edn, Johns Hopkins University Press, Baltimore, MD.
    • (1996) Matrix Computations
    • Golub, G.1    Loan, C.V.2
  • 42
    • 84870063507 scopus 로고    scopus 로고
    • Ensemble data assimilation for hyperbolic systems
    • Gonzalez-Tokman, C. & Hunt, B. (2013), ‘Ensemble data assimilation for hyperbolic systems’, Physica D 243, 128-142.
    • (2013) Physica D , vol.243 , pp. 128-142
    • Gonzalez-Tokman, C.1    Hunt, B.2
  • 45
    • 0035439412 scopus 로고    scopus 로고
    • An algorithmic introduction to numerical simulation of stochastic differential equations
    • Higham, D. (2001), ‘An algorithmic introduction to numerical simulation of stochastic differential equations’, SIAM Review 43, 525-546.
    • (2001) SIAM Review , vol.43 , pp. 525-546
    • Higham, D.1
  • 46
    • 0000183857 scopus 로고
    • The initialization of numerical models by a dynamic relaxation technique
    • Hoke, J. & Anthes, R. (1976), ‘The initialization of numerical models by a dynamic relaxation technique’, Mon. Wea. Rev. 104, 1551-1556.
    • (1976) Mon. Wea. Rev , vol.104 , pp. 1551-1556
    • Hoke, J.1    Anthes, R.2
  • 48
    • 34248675795 scopus 로고    scopus 로고
    • Efficient data assimilation for spatial-temporal chaos: A local ensemble transform kalman filter
    • Hunt, B., Kostelich, E. & Szunyogh, I. (2007), ‘Efficient data assimilation for spatial-temporal chaos: A local ensemble transform Kalman filter’, Physica D 230, 112-137.
    • (2007) Physica D , vol.230 , pp. 112-137
    • Hunt, B.1    Kostelich, E.2    Szunyogh, I.3
  • 49
    • 84893824164 scopus 로고    scopus 로고
    • Convervation of mass and preservation of positivity with ensemble-type kalman filter algorithms
    • Janjic, T., McLaughlin, D., Cohn, S. & Verlaan, M. (2014), ‘Convervation of mass and preservation of positivity with ensemble-type Kalman filter algorithms’, Mon. Wea. Rev. 142, 755-773.
    • (2014) Mon. Wea. Rev , vol.142 , pp. 755-773
    • Janjic, T.1    Mc Laughlin, D.2    Cohn, S.3    Verlaan, M.4
  • 55
    • 0029413779 scopus 로고
    • Quasi-linear geostatistical theory for inverting
    • Kitanidis, P. (1995), ‘Quasi-linear geostatistical theory for inverting’, Water Resources Research 31, 2411-2419.
    • (1995) Water Resources Research , vol.31 , pp. 2411-2419
    • Kitanidis, P.1
  • 57
    • 30344486983 scopus 로고    scopus 로고
    • Recursive monte carlo filter: Algorithms and theoretical analysis
    • Künsch, H. (2005), ‘Recursive Monte Carlo filter: Algorithms and theoretical analysis’, Ann. Statist. 33, 1983-2021.
    • (2005) Ann. Statist , vol.33 , pp. 1983-2021
    • Künsch, H.1
  • 59
    • 84886404242 scopus 로고    scopus 로고
    • Analysis of the 3dvar filter for the partially observed lorenz63 model
    • Law, K., Shukia, A. & Stuart, A. (2014), ‘Analysis of the 3DVAR filter for the partially observed Lorenz’63 model’, Discrete and Continuous Dynamical Systems A 34, 1061-1078.
    • (2014) Discrete and Continuous Dynamical Systems A , vol.34 , pp. 1061-1078
    • Law, K.1    Shukia, A.2    Stuart, A.3
  • 60
    • 84855791991 scopus 로고    scopus 로고
    • A moment matching ensemble filter for nonlinear and non-gaussian data assimilation
    • Lei, J. & Bickel, P. (2011), ‘A moment matching ensemble filter for nonlinear and non-Gaussian data assimilation’, Mon. Wea. Rev. 139, 3964-3973.
    • (2011) Mon. Wea. Rev , vol.139 , pp. 3964-3973
    • Lei, J.1    Bickel, P.2
  • 63
    • 43049140484 scopus 로고    scopus 로고
    • Unbiased ensemble square root filters
    • Livings, D., Dance, S. & Nichols, N. (2008), ‘Unbiased ensemble square root filters’, Physica D 237, 1021-1028.
    • (2008) Physica D , vol.237 , pp. 1021-1028
    • Livings, D.1    Dance, S.2    Nichols, N.3
  • 64
    • 0000241853 scopus 로고
    • Deterministic non-periodic flows
    • Lorenz, E. (1963), ‘Deterministic non-periodic flows’, J. Atmos. Sci. 20, 130-141.
    • (1963) J. Atmos. Sci , vol.20 , pp. 130-141
    • Lorenz, E.1
  • 66
    • 84974004014 scopus 로고
    • Existence and uniqueness of monotone measure-preserving maps
    • McCann, R. (1995), ‘Existence and uniqueness of monotone measure-preserving maps’, Duke Math. J. 80, 309-323.
    • (1995) Duke Math. J , vol.80 , pp. 309-323
    • Mc Cann, R.1
  • 67
    • 0010914615 scopus 로고
    • A class of markov processes associated with nonlinear parabolic equations
    • McKean, H. (1966), ‘A class of Markov processes associated with nonlinear parabolic equations’, Proc. Natl. Acad. Sci. USA 56, 1907-1911.
    • (1966) Proc. Natl. Acad. Sci. USA , vol.56 , pp. 1907-1911
    • Mc Kean, H.1
  • 69
    • 79954615574 scopus 로고    scopus 로고
    • The gaussian approach to adaptive covariance inflation and its implementation with the local ensemble transform kalman filter
    • Miyoshi, T. (2011), ‘The Gaussian approach to adaptive covariance inflation and its implementation with the local ensemble transform Kalman filter’, Mon. Wea. Rev. 139, 1519-1535.
    • (2011) Mon. Wea. Rev , vol.139 , pp. 1519-1535
    • Miyoshi, T.1
  • 70
    • 84873147023 scopus 로고    scopus 로고
    • Implicit particle filtering for models with partial noise and an application to geomagnetic data assimilation
    • Morzfeld, M. & Chorin, A. (2012), ‘Implicit particle filtering for models with partial noise and an application to geomagnetic data assimilation’, Nonlinear Processes in Geophysics 19, 365-382.
    • (2012) Nonlinear Processes in Geophysics , vol.19 , pp. 365-382
    • Morzfeld, M.1    Chorin, A.2
  • 71
    • 84855206730 scopus 로고    scopus 로고
    • A random map implementation of implicit filters
    • Morzfeld, M., Tu, X., Atkins, E. & Chorin, A. (2012), ‘A random map implementation of implicit filters’, J. Comput. Phys. 231, 2049-2066.
    • (2012) J. Comput. Phys , vol.231 , pp. 2049-2066
    • Morzfeld, M.1    Tu, X.2    Atkins, E.3    Chorin, A.4
  • 72
    • 84866043299 scopus 로고    scopus 로고
    • Bayesian inference with optimal maps
    • Moselhy, T.E. & Marzouk, Y. (2012), ‘Bayesian inference with optimal maps’, J. Comput. Phys. 231, 7815-7850.
    • (2012) J. Comput. Phys , vol.231 , pp. 7815-7850
    • Moselhy, T.E.1    Marzouk, Y.2
  • 73
    • 84968494100 scopus 로고
    • On the volume elements on a manifold
    • Moser, J. (1965), ‘On the volume elements on a manifold’, Trans. Amer. Math. Soc. 120, 286-294.
    • (1965) Trans. Amer. Math. Soc , vol.120 , pp. 286-294
    • Moser, J.1
  • 75
    • 84859755844 scopus 로고    scopus 로고
    • A regulated localization scheme for ensemble-based kalman filters
    • Nerger, L., Pfander, T.J., Schroter, J. & Hiller, W. (2012), ‘A regulated localization scheme for ensemble-based Kalman filters’, Q.J.R. Meteorolog. Soc. 138, 802-812.
    • (2012) Q.J.R. Meteorolog. Soc , vol.138 , pp. 802-812
    • Nerger, L.1    Pfander, T.J.2    Schroter, J.3    Hiller, W.4
  • 78
    • 0000300701 scopus 로고    scopus 로고
    • On conditional simulation to inaccurate data
    • Oliver, D. (1996), ‘On conditional simulation to inaccurate data’, Math. Geology 28, 811-817.
    • (1996) Math. Geology , vol.28 , pp. 811-817
    • Oliver, D.1
  • 79
    • 85032603809 scopus 로고    scopus 로고
    • Conditioning permeability fields on pressure data
    • presented at the 5th European Conference on the Mathematics of Oil Recovery, Leoben, Austria
    • Oliver, D., He, N. & Reynolds, A. (1996), ‘Conditioning permeability fields on pressure data. Technical Report: presented at the 5th European Conference on the Mathematics of Oil Recovery, Leoben, Austria.
    • (1996) Technical Report
    • Oliver, D.1    He, N.2    Reynolds, A.3
  • 80
    • 0000126436 scopus 로고
    • The distance between two random vectors with given dispersion matrices
    • Olkin, I. & Pukelsheim, F. (1982), ‘The distance between two random vectors with given dispersion matrices’, Lin. Alg. and its Applns. 48, 257-263.
    • (1982) Lin. Alg. And Its Applns , vol.48 , pp. 257-263
    • Olkin, I.1    Pukelsheim, F.2
  • 82
    • 0001560970 scopus 로고    scopus 로고
    • The geometry of dissipative evolution equations: The porous medium equation
    • Otto, F. (2001), ‘The geometry of dissipative evolution equations: the porous medium equation’, Comm. Part. Diff. Eqs. 26, 101-174.
    • (2001) Comm. Part. Diff. Eqs , vol.26 , pp. 101-174
    • Otto, F.1
  • 85
    • 0001201909 scopus 로고
    • Bayesian model selection in social research
    • Raftery, A. (1995), ‘Bayesian model selection in social research’, Sociological Methodology 25, 111-163.
    • (1995) Sociological Methodology , vol.25 , pp. 111-163
    • Raftery, A.1
  • 87
    • 79953028094 scopus 로고    scopus 로고
    • A dynamical systems framework for intermittent data assimilation
    • Reich, S. (2011), ‘A dynamical systems framework for intermittent data assimilation’, BIT Numer Math 51, 235-249.
    • (2011) BIT Numer Math , vol.51 , pp. 235-249
    • Reich, S.1
  • 88
    • 84860414915 scopus 로고    scopus 로고
    • A gaussian mixture ensemble transform filter
    • Reich, S. (2012), ‘A Gaussian mixture ensemble transform filter’, Q.J.R. Meteorolog. Soc. 138, 222-233.
    • (2012) Q.J.R. Meteorolog. Soc , vol.138 , pp. 222-233
    • Reich, S.1
  • 89
    • 84893567500 scopus 로고    scopus 로고
    • A guided sequential monte carlo method for the assimilation of data into stochastic dynamical systems
    • Proceedings in Mathematics and Statistics, Springer-Verlag, Basel
    • Reich, S. (2013a), ‘A guided sequential Monte Carlo method for the assimilation of data into stochastic dynamical systems’. In Recent Trends in Dynamical Systems, Proceedings in Mathematics and Statistics, 35, Springer-Verlag, Basel, pp. 205-220.
    • (2013) Recent Trends in Dynamical Systems , vol.35 , pp. 205-220
    • Reich, S.1
  • 90
    • 84886860357 scopus 로고    scopus 로고
    • A nonparametric ensemble transform method for bayesian inference
    • Reich, S. (2013b), ‘A nonparametric ensemble transform method for Bayesian inference’, SIAM J. Sci. Comput. 35, A2013-A2024.
    • (2013) SIAM J. Sci. Comput , vol.35
    • Reich, S.1
  • 91
    • 84886869340 scopus 로고    scopus 로고
    • Ensemble filter techniques for intermittent data assimilation
    • M. Cullen, M.A. Freitag, S. Kindermann & R. Scheichl, eds, Radon Ser. Comput. Appl. Math.,13, de Gruyter, Berlin
    • Reich, S. & Cotter, C. (2013), ‘Ensemble filter techniques for intermittent data assimilation’. In Large Scale Inverse Problems. Computational Methods and Applications in the Earth Sciences, M. Cullen, M.A. Freitag, S. Kindermann & R. Scheichl, eds, Radon Ser. Comput. Appl. Math., 13, de Gruyter, Berlin, pp. 91-134.
    • (2013) Large Scale Inverse Problems. Computational Methods and Applications in the Earth Sciences , pp. 91-134
    • Reich, S.1    Cotter, C.2
  • 95
    • 84863331593 scopus 로고    scopus 로고
    • An iterative enkf for strongly nonlinear systems
    • Sakov, P., Oliver, D. & Bertino, L. (2012), ‘An iterative EnKF for strongly nonlinear systems’, Mon. Wea. Rev. 140, 1988-2004.
    • (2012) Mon. Wea. Rev , vol.140 , pp. 1988-2004
    • Sakov, P.1    Oliver, D.2    Bertino, L.3
  • 98
    • 34548725568 scopus 로고    scopus 로고
    • Cluster ensemble kalman filter
    • Smith, K. (2007a), ‘Cluster ensemble Kalman filter’, Tellus 59A, 749-757.
    • (2007) Tellus , vol.59A , pp. 749-757
    • Smith, K.1
  • 101
    • 79952447568 scopus 로고    scopus 로고
    • Bridging the ensemble kalman filter and particle filters: The adaptive gaussian mixture filter
    • Stordal, A., Karlsen, H., Nrnvdal, G., Skaug, H. & Valles, B. (2011), ‘Bridging the ensemble Kalman filter and particle filters: the adaptive Gaussian mixture filter’, Comput. Geosci. 15, 293-305.
    • (2011) Comput. Geosci , vol.15 , pp. 293-305
    • Stordal, A.1    Karlsen, H.2    Nrnvdal, G.3    Skaug, H.4    Valles, B.5
  • 103
    • 77951793592 scopus 로고    scopus 로고
    • Inverse problems: A bayesian perspective
    • Stuart, A. (2010), ‘Inverse problems: a Bayesian perspective’, Acta Numerica 17, 451-559.
    • (2010) Acta Numerica , vol.17 , pp. 451-559
    • Stuart, A.1
  • 105
    • 0000779360 scopus 로고
    • Detecting strange attractors in turbulence
    • Lecture Notes in Mathematics,898, Springer-Verlag, Berlin
    • Takens, F. (1981), ‘Detecting strange attractors in turbulence’. In Dynamical Systems and Turbulence. Lecture Notes in Mathematics, 898, Springer-Verlag, Berlin, pp. 366-381.
    • (1981) Dynamical Systems and Turbulence , pp. 366-381
    • Takens, F.1
  • 107
    • 56149102927 scopus 로고    scopus 로고
    • 3rd edn, Cambridge University Press, Cambridge
    • Tijms, H. (2012), Understanding Probability, 3rd edn, Cambridge University Press, Cambridge.
    • (2012) Understanding Probability
    • Tijms, H.1
  • 109
    • 78650057011 scopus 로고    scopus 로고
    • Nonlinear data assimilation in the geosciences: An extremely efficient particle filter
    • van Leeuwen, P. (2010), ‘Nonlinear data assimilation in the geosciences: an extremely efficient particle filter’, Q.J.R. Meteorolog. Soc. 136, 1991-1996.
    • (2010) Q.J.R. Meteorolog. Soc , vol.136 , pp. 1991-1996
    • Van Leeuwen, P.1
  • 110
    • 84876142853 scopus 로고    scopus 로고
    • Efficient fully nonlinear data assimilation for geophysical fluid dynamics
    • van Leeuwen, P. & Ades, M. (2013), ‘Efficient fully nonlinear data assimilation for geophysical fluid dynamics’, Computers & Geosciences 55, 16-27.
    • (2013) Computers & Geosciences , vol.55 , pp. 16-27
    • Van Leeuwen, P.1    Ades, M.2
  • 114
    • 3943069649 scopus 로고    scopus 로고
    • Which is better, an ensemble of positivenegative pairs or a centered spherical simplex ensemble?
    • Wang, X., Bishop, C. & Julier, S. (2004), ‘Which is better, an ensemble of positivenegative pairs or a centered spherical simplex ensemble?’, Mon. Wea. Rev. 132, 1590-1505.
    • (2004) Mon. Wea. Rev , vol.132 , pp. 1505-1590
    • Wang, X.1    Bishop, C.2    Julier, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.