메뉴 건너뛰기




Volumn 139, Issue 12, 2011, Pages 3964-3973

A moment matching ensemble filter for nonlinear non-gaussian data assimilation

Author keywords

Bias; Ensembles; Filtering techniques; Forecasting; Kalman filters

Indexed keywords

BIAS; DE-BIASING; ENSEMBLE FILTER; ENSEMBLE FORECASTING; ENSEMBLE KALMAN FILTER; ENSEMBLES; FILTERING TECHNIQUES; GAUSSIANS; HIGH-DIMENSIONAL SYSTEMS; LARGE SYSTEM; LINEAR RELATIONSHIPS; MOMENT-MATCHING; NON-LINEAR NON-GAUSSIAN; PARTICLE FILTER; STATE VARIABLES;

EID: 84855791991     PISSN: 00270644     EISSN: None     Source Type: Journal    
DOI: 10.1175/2011MWR3553.1     Document Type: Article
Times cited : (65)

References (35)
  • 1
    • 0035655814 scopus 로고    scopus 로고
    • An ensemble adjustment Kalman filter for data assimilation
    • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 2884-2903.
    • (2001) Mon. Wea. Rev. , vol.129 , pp. 2884-2903
    • Anderson, J.L.1
  • 2
    • 0042821672 scopus 로고    scopus 로고
    • A local least squares framework for ensemble filtering
    • Anderson, J. L., 2003: A local least squares framework for ensemble filtering. Mon. Wea. Rev., 131, 634-642.
    • (2003) Mon. Wea. Rev. , vol.131 , pp. 634-642
    • Anderson, J.L.1
  • 3
    • 34248655165 scopus 로고    scopus 로고
    • Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter
    • Anderson, J. L., 2007: Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter. Physica D, 230, 99-111.
    • (2007) Physica D , vol.230 , pp. 99-111
    • Anderson, J.L.1
  • 4
    • 1642360010 scopus 로고    scopus 로고
    • Toward a nonlinear ensemble filter for high-dimensional systems
    • doi:10.1029/2002JD002900
    • Bengtsson, T., C. Snyder, and D. Nychka, 2003: Toward a nonlinear ensemble filter for high-dimensional systems. J. Geophys. Res., 108 (D24), 8775, doi:10.1029/2002JD002900.
    • (2003) J. Geophys. Res. , vol.108 , Issue.D24 , pp. 8775
    • Bengtsson, T.1    Snyder, C.2    Nychka, D.3
  • 5
    • 0035270690 scopus 로고    scopus 로고
    • Adaptive sampling with the ensemble transformation Kalman filter. Part I: Theoretical aspects
    • Bishop, C. H., B. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transformation Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420-436.
    • (2001) Mon. Wea. Rev. , vol.129 , pp. 420-436
    • Bishop, C.H.1    Etherton, B.2    Majumdar, S.J.3
  • 6
    • 0037547172 scopus 로고    scopus 로고
    • A demonstration of ensemble-based assimilation methods with a layered OGCM from the perspective of operational ocean forecasting systems
    • Brusdal, K., J.M.Brankart, G. Halberstadt, G.Evensen, P.Brasseur, P. J. van Leeuwen, E. Dombrowsky, and J. Verron, 2003: A demonstration of ensemble-based assimilation methods with a layered OGCM from the perspective of operational ocean forecasting systems. J. Mar. Syst., 40-41, 253-289.
    • (2003) J. Mar. Syst. , vol.40-41 , pp. 253-289
    • Brusdal, K.1    Brankart, J.M.2    Halberstadt, G.3    Evensen, G.4    Brasseur, P.5    van Leeuwen, P.J.6    Dombrowsky, E.7    Verron, J.8
  • 7
    • 0032439201 scopus 로고    scopus 로고
    • Analysis scheme in the ensemble Kalman filter
    • Burgers, G., P. J. van Leeuwen, andG.Evensen, 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 1719-1724.
    • (1998) Mon. Wea. Rev. , vol.126 , pp. 1719-1724
    • Burgers, G.1    van Leeuwen, P.J.2    Evensen, G.3
  • 8
    • 70350453771 scopus 로고    scopus 로고
    • Implicit sampling for particle filters
    • Chorin, A., and X. Tu, 2009: Implicit sampling for particle filters. Proc. Natl. Acad. Sci. USA, 106, 17 249-17 254.
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 17249-17254
    • Chorin, A.1    Tu, X.2
  • 9
    • 0028193070 scopus 로고
    • Sequential data assimilation with a non-linear quasi-geostrophic model using Monte Carlo methods to forecast error statistics
    • Evensen, G., 1994: Sequential data assimilation with a non-linear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 (C5), 10 143-10 162.
    • (1994) J. Geophys. Res. , vol.99 , Issue.C5 , pp. 10143-10162
    • Evensen, G.1
  • 10
    • 84884550570 scopus 로고    scopus 로고
    • The ensemble Kalman filter: Theoretical formulation and practical implementation
    • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343-367.
    • (2003) Ocean Dyn. , vol.53 , pp. 343-367
    • Evensen, G.1
  • 12
    • 0033023511 scopus 로고    scopus 로고
    • Construction of correlation functions in two and three dimensions
    • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723-757.
    • (1999) Quart. J. Roy. Meteor. Soc. , vol.125 , pp. 723-757
    • Gaspari, G.1    Cohn, S.E.2
  • 13
    • 0027580559 scopus 로고
    • Novel approach to nonlinear/non-Gaussian Bayesian state estimation
    • Gordon, N., D. Salmond, and A. Smith, 1993: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc.-F, 140, 107-113.
    • (1993) IEE Proc.-F , vol.140 , pp. 107-113
    • Gordon, N.1    Salmond, D.2    Smith, A.3
  • 15
    • 0032024819 scopus 로고    scopus 로고
    • Data assimilation using an ensemble Kalman filter technique
    • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796-811.
    • (1998) Mon. Wea. Rev. , vol.126 , pp. 796-811
    • Houtekamer, P.L.1    Mitchell, H.L.2
  • 16
    • 0035129828 scopus 로고    scopus 로고
    • A sequential ensemble Kalman filter for atmospheric data assimilation
    • Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129, 123-137.
    • (2001) Mon. Wea. Rev. , vol.129 , pp. 123-137
    • Houtekamer, P.L.1    Mitchell, H.L.2
  • 17
    • 30344486983 scopus 로고    scopus 로고
    • Recursive Monte Carlo filters: Algorithms and theoretical analysis
    • Künsch, H. R., 2005: Recursive Monte Carlo filters: Algorithms and theoretical analysis. Ann. Stat., 33, 1983-2021.
    • (2005) Ann. Stat. , vol.33 , pp. 1983-2021
    • Künsch, H.R.1
  • 18
    • 4444303259 scopus 로고    scopus 로고
    • Implications of stochastic and deterministic filters as ensemble-based data assimilation methods in varying regimes of error growth
    • Lawson, W. G., and J. A. Hansen, 2004: Implications of stochastic and deterministic filters as ensemble-based data assimilation methods in varying regimes of error growth. Mon. Wea. Rev., 132, 1966-1981.
    • (2004) Mon. Wea. Rev. , vol.132 , pp. 1966-1981
    • Lawson, W.G.1    Hansen, J.A.2
  • 19
    • 77955540665 scopus 로고    scopus 로고
    • Comparison of ensemble Kalman filters under non-Gaussianity
    • Lei, J., P. Bickel, and C. Snyder, 2010: Comparison of ensemble Kalman filters under non-Gaussianity. Mon. Wea. Rev., 138, 1293-1306.
    • (2010) Mon. Wea. Rev. , vol.138 , pp. 1293-1306
    • Lei, J.1    Bickel, P.2    Snyder, C.3
  • 20
    • 0001846226 scopus 로고    scopus 로고
    • Predictability: A problem partly solved
    • Reading, Berkshire, United Kingdom, European Centre for Medium-Range Weather Forecasts
    • Lorenz, E. N., 1996: Predictability: A problem partly solved. Proc. Seminar onPredictability, Reading, Berkshire, United Kingdom, European Centre for Medium-Range Weather Forecasts, 1-18.
    • (1996) Proc. Seminar on Predictability , pp. 1-18
    • Lorenz, E.N.1
  • 21
    • 20444468413 scopus 로고    scopus 로고
    • Designing chaotic models
    • Lorenz, E. N.,2005: Designing chaotic models. J. Atmos. Sci., 62, 1574-1587.
    • (2005) J. Atmos. Sci. , vol.62 , pp. 1574-1587
    • Lorenz, E.N.1
  • 22
    • 70350341250 scopus 로고    scopus 로고
    • Ensemble Kalman filter configurations and their performance with the logistic map
    • Mitchell, H. L., and P. L. Houtekamer, 2009: Ensemble Kalman filter configurations and their performance with the logistic map. Mon. Wea. Rev., 137, 4325-4343.
    • (2009) Mon. Wea. Rev. , vol.137 , pp. 4325-4343
    • Mitchell, H.L.1    Houtekamer, P.L.2
  • 23
    • 0003345004 scopus 로고    scopus 로고
    • Improving regularized particle filters
    • A. Doucet, N. de Freitas, and N. Gordon, Eds., Springer-Verlag
    • Musso, C., N. Oudjane, and F. Le Gland, 2001: Improving regularized particle filters. Sequential Monte Carlo Methods in Practice, A. Doucet, N. de Freitas, and N. Gordon, Eds., Springer-Verlag, 247-271.
    • (2001) Sequential Monte Carlo Methods in Practice , pp. 247-271
    • Musso, C.1    Oudjane, N.2    Le Gland, F.3
  • 24
    • 34547192187 scopus 로고    scopus 로고
    • Merging particle filter for sequential data assimilation
    • Nakano, S., G. Ueno, and T. Higuchi, 2007: Merging particle filter for sequential data assimilation. Nonlinear Processes Geophys., 14, 395-408.
    • (2007) Nonlinear Processes Geophys. , vol.14 , pp. 395-408
    • Nakano, S.1    Ueno, G.2    Higuchi, T.3
  • 25
    • 8844258829 scopus 로고    scopus 로고
    • A local ensemble Kalman filter for atmospheric data assimilation
    • Ott, E., Coauthors, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 415-428.
    • (2004) Tellus , vol.56 A , pp. 415-428
    • Ott, E.1
  • 26
    • 0035335074 scopus 로고    scopus 로고
    • Stochastic methods for sequential data assimilation in strongly nonlinear systems
    • Pham, D. T., 2001: Stochastic methods for sequential data assimilation in strongly nonlinear systems. Mon. Wea. Rev., 129, 1194-1207.
    • (2001) Mon. Wea. Rev. , vol.129 , pp. 1194-1207
    • Pham, D.T.1
  • 27
    • 53249135012 scopus 로고    scopus 로고
    • Sampling errors in ensemble Kalman filtering. Part I: Theory
    • Sacher, W., and P. Bartello, 2008: Sampling errors in ensemble Kalman filtering. Part I: Theory. Mon. Wea. Rev., 136, 3035-3049.
    • (2008) Mon. Wea. Rev. , vol.136 , pp. 3035-3049
    • Sacher, W.1    Bartello, P.2
  • 28
    • 39049157179 scopus 로고    scopus 로고
    • Adeterministic formulation of the ensemble Kalman filter: An alternative to ensemble square root filters
    • Sakov, P., and P. R. Oke, 2008a:Adeterministic formulation of the ensemble Kalman filter: An alternative to ensemble square root filters. Tellus, 60A, 361-371.
    • (2008) Tellus , vol.60 A , pp. 361-371
    • Sakov, P.1    Oke, P.R.2
  • 29
    • 39049173291 scopus 로고    scopus 로고
    • Implications of the form of the ensemble transformation in the ensemble square root filters
    • Sakov, P., and P. R. Oke, 2008b: Implications of the form of the ensemble transformation in the ensemble square root filters. Mon. Wea. Rev., 136, 1042-1053.
    • (2008) Mon. Wea. Rev. , vol.136 , pp. 1042-1053
    • Sakov, P.1    Oke, P.R.2
  • 30
    • 64149083162 scopus 로고    scopus 로고
    • Obstacles to high-dimensional particle filtering
    • Snyder, C., T. Bengtsson, P. Bickel, and J. Anderson, 2008: Obstacles to high-dimensional particle filtering. Mon. Wea. Rev., 136, 4629-4640.
    • (2008) Mon. Wea. Rev. , vol.136 , pp. 4629-4640
    • Snyder, C.1    Bengtsson, T.2    Bickel, P.3    Anderson, J.4
  • 31
    • 0142010030 scopus 로고    scopus 로고
    • A variance-minimizing filter for largescale applications
    • van Leeuwen, P. J., 2003: A variance-minimizing filter for largescale applications. Mon. Wea. Rev., 131, 2071-2084.
    • (2003) Mon. Wea. Rev. , vol.131 , pp. 2071-2084
    • van Leeuwen, P.J.1
  • 32
    • 74949130817 scopus 로고    scopus 로고
    • Particle filtering in geophysical systems
    • van Leeuwen, P. J., 2009: Particle filtering in geophysical systems. Mon. Wea. Rev., 137, 4089-4114.
    • (2009) Mon. Wea. Rev. , vol.137 , pp. 4089-4114
    • van Leeuwen, P.J.1
  • 33
    • 78650057011 scopus 로고    scopus 로고
    • Nonlinear data assimilation in geosciences: An extremely efficient particle filter
    • van Leeuwen, P. J., 2010: Nonlinear data assimilation in geosciences: An extremely efficient particle filter. Quart. J. Roy. Meteor. Soc., 136, 1991-1999.
    • (2010) Quart. J. Roy. Meteor. Soc. , vol.136 , pp. 1991-1999
    • van Leeuwen, P.J.1
  • 34
    • 0036646009 scopus 로고    scopus 로고
    • Ensemble data assimilation without perturbed observations
    • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 1913-1924.
    • (2002) Mon. Wea. Rev. , vol.130 , pp. 1913-1924
    • Whitaker, J.S.1    Hamill, T.M.2
  • 35
    • 33746082838 scopus 로고    scopus 로고
    • A note on the particle filter with posterior Gaussian resampling
    • Xiong, X., I. M. Navon, and B.Uzunoglu, 2006:A note on the particle filter with posterior Gaussian resampling. Tellus, 58A, 456-460.
    • (2006) Tellus , vol.58 A , pp. 456-460
    • Xiong, X.1    Navon, I.M.2    Uzunoglu, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.