메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1-357

Filtering complex turbulent systems

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84926093390     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1017/CBO9781139061308     Document Type: Book
Times cited : (252)

References (134)
  • 1
    • 25444532546 scopus 로고    scopus 로고
    • A practical computational framework for the multidimensional moment-constrained maximum entropy principle
    • Abramov, R. 2006. A practical computational framework for the multidimensional moment-constrained maximum entropy principle. J. Comput. Phys., 211(1), 198-209.
    • (2006) J. Comput. Phys , vol.211 , Issue.1 , pp. 198-209
    • Abramov, R.1
  • 2
    • 34548426453 scopus 로고    scopus 로고
    • An improved algorithm for the multidimensional moment-constrained maximum entropy problem
    • Abramov, R. V. 2007. An improved algorithm for the multidimensional moment-constrained maximum entropy problem. J. Comput. Phys., 226(1), 621-644.
    • (2007) J. Comput. Phys , vol.226 , Issue.1 , pp. 621-644
    • Abramov, R.V.1
  • 3
    • 55549092043 scopus 로고    scopus 로고
    • The multidimensional moment-constrained maximum entropy problem: A bfgs algorithm with constraint scaling
    • Abramov, R. V. 2009. The multidimensional moment-constrained maximum entropy problem: A BFGS algorithm with constraint scaling. J. Comput. Phys., 228(1), 96-108.
    • (2009) J. Comput. Phys , vol.228 , Issue.1 , pp. 96-108
    • Abramov, R.V.1
  • 4
    • 77954642895 scopus 로고    scopus 로고
    • The multidimensional maximum entropy moment problem: A review on numerical methods
    • Abramov, R. V. 2010. The multidimensional maximum entropy moment problem: A review on numerical methods. Comm. Math. Sci., 8(2), 377-392.
    • (2010) Comm. Math. Sci , vol.8 , Issue.2 , pp. 377-392
    • Abramov, R.V.1
  • 5
    • 16244415816 scopus 로고    scopus 로고
    • Quantifying uncertainty for non-gaussian ensembles in complex systems
    • Abramov, R. and Majda, A. J. 2004. Quantifying uncertainty for non-Gaussian ensembles in complex systems. SIAM J. Sci. Comput., 25(2), 411-447.
    • (2004) SIAM J. Sci. Comput , vol.25 , Issue.2 , pp. 411-447
    • Abramov, R.1    Majda, A.J.2
  • 6
    • 36348987164 scopus 로고    scopus 로고
    • Blended response algorithm for linear fluctuation-dissipation for complex nonlinear dynamical systems
    • Abramov, R. V. and Majda, A. J. 2007. Blended response algorithm for linear fluctuation-dissipation for complex nonlinear dynamical systems. Nonlinearity, 20, 2793-2821.
    • (2007) Nonlinearity , vol.20 , pp. 2793-2821
    • Abramov, R.V.1    Majda, A.J.2
  • 8
    • 0035655814 scopus 로고    scopus 로고
    • An ensemble adjustment kalman filter for data assimilation
    • Anderson, J. L. 2001. An ensemble adjustment Kalman filter for data assimilation. Monthly Weather Rev., 129, 2884-2903.
    • (2001) Monthly Weather Rev , vol.129 , pp. 2884-2903
    • Anderson, J.L.1
  • 9
    • 0042821672 scopus 로고    scopus 로고
    • A local least squares framework for ensemble filtering
    • Anderson, J.L. 2003. A local least squares framework for ensemble filtering. Monthly Weather Rev., 131(4), 634-642.
    • (2003) Monthly Weather Rev , vol.131 , Issue.4 , pp. 634-642
    • Anderson, J.L.1
  • 10
    • 34247642674 scopus 로고    scopus 로고
    • An adaptive covariance inflation error correction algorithm for ensemble filters
    • Anderson, J. L. 2007. An adaptive covariance inflation error correction algorithm for ensemble filters. TellusA, 59, 210-224.
    • (2007) Tellusa , vol.59 , pp. 210-224
    • Anderson, J.L.1
  • 11
    • 78650184482 scopus 로고    scopus 로고
    • A non-gaussian ensemble filter update for data assimilation
    • Anderson, J. L. 2010. A non-Gaussian ensemble filter update for data assimilation. Monthly Weather Rev., 138(11), 4186-4198.
    • (2010) Monthly Weather Rev , vol.138 , Issue.11 , pp. 4186-4198
    • Anderson, J.L.1
  • 12
    • 0033500692 scopus 로고    scopus 로고
    • A monte carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts
    • Anderson, J. L. and Anderson, S. L. 1999. A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Monthly Weather Rev., 127, 2741-2758.
    • (1999) Monthly Weather Rev , vol.127 , pp. 2741-2758
    • Anderson, J.L.1    Anderson, S.L.2
  • 13
    • 33645575318 scopus 로고    scopus 로고
    • Local ensemble kalman filtering in the presence of model bias
    • Baek, S.-J., Hunt, B. R., Kalnay, E., Ott, E. and Szunyogh, 1.2006. Local ensemble Kalman filtering in the presence of model bias. Tellus A, 58(3), 293-306.
    • (2006) Tellus A , vol.58 , Issue.3 , pp. 293-306
    • Baek, S.-J.1    Hunt, B.R.2    Kalnay, E.3    Ott, E.4
  • 15
    • 57949085983 scopus 로고    scopus 로고
    • Curse of dimensionality revisited: Collapse of the particle filter in very large scale systems
    • Nolan, D. and Speed, T,. Institute of Mathematical Sciences
    • Bengtsson, T., Bickel, P. and Li, B. 2008. Curse of dimensionality revisited: Collapse of the particle filter in very large scale systems. In: Nolan, D. and Speed, T. (eds), IMS Lecture Notes - Monograph Series in Probability and Statistics: Essays in Honor of David A. Freedman, vol. 2. Institute of Mathematical Sciences, pp. 316-334.
    • (2008) IMS Lecture Notes - Monograph Series in Probability and Statistics: Essays in Honor of David A. Freedman , vol.2 , pp. 316-334
    • Bengtsson, T.1    Bickel, P.2    Li, B.3
  • 17
    • 0041402683 scopus 로고    scopus 로고
    • Bayesian hierarchical modeling of air-sea interaction
    • Berliner, L.M., Milliff, R.F. and Wikle, C. K. 2003. Bayesian hierarchical modeling of air-sea interaction. J. Geophys. Res., 108, 3104-3120.
    • (2003) J. Geophys. Res , vol.108 , pp. 3104-3120
    • Berliner, L.M.1    Milliff, R.F.2    Wikle, C.K.3
  • 19
    • 0035270690 scopus 로고    scopus 로고
    • Adaptive sampling with the ensemble transform kalman filter. Part i: The theoretical aspects
    • Bishop, C. H., Etherton, B. and Majumdar, S. J. 2001. Adaptive sampling with the ensemble transform Kalman filter. Part I: The theoretical aspects. Monthly Weather Rev., 129, 420-436.
    • (2001) Monthly Weather Rev , vol.129 , pp. 420-436
    • Bishop, C.H.1    Etherton, B.2    Majumdar, S.J.3
  • 20
    • 0036470346 scopus 로고    scopus 로고
    • Elementary models with probability distribution function intermittency for passive scalars with a mean gradient
    • Bourlioux, A. and Majda, A.J. 2002. Elementary models with probability distribution function intermittency for passive scalars with a mean gradient. Phys. Fluids, 14(2), 881-897.
    • (2002) Phys. Fluids , vol.14 , Issue.2 , pp. 881-897
    • Bourlioux, A.1    Majda, A.J.2
  • 21
    • 84855191914 scopus 로고    scopus 로고
    • Filtering skill for turbulent signals for a suite of nonlinear and linear extended kalman filters
    • Branicki, M., Gershgorin, B. and Majda, A.J. 2011. Filtering skill for turbulent signals for a suite of nonlinear and linear extended Kalman filters. J. Comput. Phys. doi:10.1016/j.jcp.2011.10.029.
    • (2011) J. Comput. Phys
    • Branicki, M.1    Gershgorin, B.2    Majda, A.J.3
  • 22
    • 0032439201 scopus 로고    scopus 로고
    • On the analysis scheme in the ensemble kalman filter
    • Burgers, G., van Leeuwen, P.J. and Evensen, G. 1998. On the analysis scheme in the ensemble Kalman filter. Monthly Weather Rev., 126, 1719-1724.
    • (1998) Monthly Weather Rev , vol.126 , pp. 1719-1724
    • Burgers, G.1    Van Leeuwen, P.J.2    Evensen, G.3
  • 23
    • 0030424167 scopus 로고    scopus 로고
    • Mapping tropical pacific sea level: Data assimilation via a reduced state space kalman filter
    • Cane, M. A., Kaplan, A., Miller, R. N., Tang, B., Hackert, E. C. and Busalacchi, A. J. 1996. Mapping tropical Pacific sea level: Data assimilation via a reduced state space Kalman filter. J. Geophys. Res., 101, 22599-22617.
    • (1996) J. Geophys. Res , vol.101 , pp. 22599-22617
    • Cane, M.A.1    Kaplan, A.2    Miller, R.N.3    Tang, B.4    Hackert, E.C.5    Busalacchi, A.J.6
  • 24
    • 39649123724 scopus 로고    scopus 로고
    • Mathematical test criteria for filtering complex systems: Plentiful observations
    • Castronovo, E., Harlim, J. and Majda, A.J. 2008. Mathematical test criteria for filtering complex systems: Plentiful observations. J. Comput. Phys., 227(7), 3678-3714.
    • (2008) J. Comput. Phys , vol.227 , Issue.7 , pp. 3678-3714
    • Castronovo, E.1    Harlim, J.2    Majda, A.J.3
  • 25
    • 6344233084 scopus 로고    scopus 로고
    • Dimensional reduction for a bayesian filter
    • Chorin, A. J. and Krause, P. 2004. Dimensional reduction for a Bayesian filter. Proc. Natl Acad. Sci., 101(42), 15013-15017.
    • (2004) Proc. Natl Acad. Sci , vol.101 , Issue.42 , pp. 15013-15017
    • Chorin, A.J.1    Krause, P.2
  • 26
    • 70350453771 scopus 로고    scopus 로고
    • Implicit sampling for particle filters
    • Chorin, A.J. and Tu, X. 2009. Implicit sampling for particle filters. Proc. Nat. Acad. Sci., 106, 17249-17254.
    • (2009) Proc. Nat. Acad. Sci , vol.106 , pp. 17249-17254
    • Chorin, A.J.1    Tu, X.2
  • 28
    • 0000725538 scopus 로고
    • Observability of discretized partial differential equations
    • Cohn, S. E. and Dee, D. P. 1988. Observability of discretized partial differential equations. SIAMJ. Numer. Anal., 25(3), 586-617.
    • (1988) SIAMJ. Numer. Anal , vol.25 , Issue.3 , pp. 586-617
    • Cohn, S.E.1    Dee, D.P.2
  • 29
    • 0026304448 scopus 로고
    • The behavior of forecast error covariances for a kalman filter in two dimensions
    • Cohn, S.E. and Parrish, S.F. 1991. The behavior of forecast error covariances for a Kalman filter in two dimensions. Monthly Weather Rev., 119, 1757-1785.
    • (1991) Monthly Weather Rev , vol.119 , pp. 1757-1785
    • Cohn, S.E.1    Parrish, S.F.2
  • 33
    • 0000674568 scopus 로고    scopus 로고
    • Data assimilation in the presence of forecast bias
    • Dee, D. P. and Da Silva, A. M. 1998. Data assimilation in the presence of forecast bias. Quart. J. Roy. Meteorol. Soc., 124, 269-295.
    • (1998) Quart. J. Roy. Meteorol. Soc , vol.124 , pp. 269-295
    • Dee, D.P.1    Da Silva, A.M.2
  • 34
    • 0034277367 scopus 로고    scopus 로고
    • Data assimilation in the presence of forecast bias: The geos moisture analysis
    • Dee, D. P. and Todling, R. 2000. Data assimilation in the presence of forecast bias: the GEOS moisture analysis. Monthly Weather Rev., 128(9), 3268-3282.
    • (2000) Monthly Weather Rev , vol.128 , Issue.9 , pp. 3268-3282
    • Dee, D.P.1    Todling, R.2
  • 35
    • 0001534675 scopus 로고    scopus 로고
    • Nonlinear filtering: Interacting particle solutions
    • Del Moral, P. 1996. Nonlinear filtering: Interacting particle solutions. Markov Proce. Related Fields, 2(44), 555-580.
    • (1996) Markov Proce. Related Fields , vol.2 , Issue.44 , pp. 555-580
    • Del Moral, P.1
  • 36
    • 0007377701 scopus 로고    scopus 로고
    • Interacting particle filtering with discrete observation
    • Doucet, A., de Freitas, N., and Gordon, N, Springer, Berlin
    • Del Moral, P. and Jacod, J. 2001. Interacting particle filtering with discrete observation. In: Doucet, A., de Freitas, N., and Gordon, N. (eds), Sequential Monte Carlo Methods in Practice, Springer, Berlin, pp. 43-75.
    • (2001) Sequential Monte Carlo Methods in Practice , pp. 43-75
    • Del Moral, P.1    Jacod, J.2
  • 37
    • 2442433325 scopus 로고    scopus 로고
    • Stochastic model of quasigeostrophic turbulence
    • Delsole, T. 2004. Stochastic model of quasigeostrophic turbulence. Surv. Geophys., 25(2), 107-149.
    • (2004) Surv. Geophys , vol.25 , Issue.2 , pp. 107-149
    • Delsole, T.1
  • 39
    • 0040010955 scopus 로고    scopus 로고
    • Low froude number limiting dynamics for stably stratified flow with small or fixed rossby number
    • Embid, P. F. and Majda, A. J. 1998. Low Froude number limiting dynamics for stably stratified flow with small or fixed Rossby Number. Geophys. Astrophys. Fluid Dyn., 87, 1-50.
    • (1998) Geophys. Astrophys. Fluid Dyn , vol.87 , pp. 1-50
    • Embid, P.F.1    Majda, A.J.2
  • 40
    • 0028193070 scopus 로고
    • Sequential data assimilation with a nonlinear quasi-geostrophic model using monte carlo methods to forecast error statistics
    • Evensen, G. 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10143-10162.
    • (1994) J. Geophys. Res , vol.99 , pp. 10143-10162
    • Evensen, G.1
  • 41
    • 84884550570 scopus 로고    scopus 로고
    • The ensemble kalman filter: Theoretical formulation and practical implementation
    • Evensen, G. 2003. The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dynam., 53, 343-367.
    • (2003) Ocean Dynam , vol.53 , pp. 343-367
    • Evensen, G.1
  • 42
    • 0035663180 scopus 로고    scopus 로고
    • State estimation using a reduced-order kalman filter
    • Farrell, B. F. and Ioannou, P. J. 2001. State estimation using a reduced-order Kalman filter. J. Atmos. Sci., 58(23), 3666-3680.
    • (2001) J. Atmos. Sci , vol.58 , Issue.23 , pp. 3666-3680
    • Farrell, B.F.1    Ioannou, P.J.2
  • 43
    • 14744285452 scopus 로고    scopus 로고
    • Distributed forcing of forecast and assimilation error systems
    • Farrell, B. F. and Ioannou, P. J. 2005. Distributed forcing of forecast and assimilation error systems. J. Atmos. Sci., 62(2), 460-475.
    • (2005) J. Atmos. Sci , vol.62 , Issue.2 , pp. 460-475
    • Farrell, B.F.1    Ioannou, P.J.2
  • 44
    • 0003769203 scopus 로고    scopus 로고
    • Wiley-Interscience, New York
    • Folland, G. B. 1999. Real Analysis. Wiley-Interscience, New York.
    • (1999) Real Analysis
    • Folland, G.B.1
  • 45
    • 33645104155 scopus 로고    scopus 로고
    • Low-order stochastic mode reduction for a prototype atmospheric gcm
    • Franzke, C. and Majda, A. J. 2006. Low-order stochastic mode reduction for a prototype atmospheric gCm. J. Atmos. Sci., 63, 457-479.
    • (2006) J. Atmos. Sci , vol.63 , pp. 457-479
    • Franzke, C.1    Majda, A.J.2
  • 46
    • 0014552637 scopus 로고
    • Treatment of bias in recursive filtering
    • AC-14
    • Friedland, B. 1969. Treatment of bias in recursive filtering. IEEE Trans. Automat. Contr., AC-14, 359-367.
    • (1969) IEEE Trans. Automat. Contr , pp. 359-367
    • Friedland, B.1
  • 47
    • 0020087929 scopus 로고
    • Estimating sudden changes of biases in linear dynamical systems
    • Friedland, B. 1982. Estimating sudden changes of biases in linear dynamical systems. IEEE Trans. Automat. Contr., AC-27, 237-240.
    • (1982) IEEE Trans. Automat. Contr , pp. 237-240
    • Friedland, B.1
  • 48
    • 0003497202 scopus 로고
    • Objective analysis of meteorological fields
    • English translation by Israeli Program for Scientific Translations, Jerusalem
    • Gandin, L. S. 1965. Objective analysis of meteorological fields. Gidrometerologich-eskoe Izdatelstvo (English translation by Israeli Program for Scientific Translations, Jerusalem, 1963).
    • (1965) Gidrometerologich-Eskoe Izdatelstvo , pp. 1963
    • Gandin, L.S.1
  • 50
    • 0033023511 scopus 로고    scopus 로고
    • Construction of correlation functions in two and three dimensions
    • Gaspari, G. and Cohn, S. E. 1999. Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteorol. Soc., 125, 723-758.
    • (1999) Quart. J. Roy. Meteorol. Soc , vol.125 , pp. 723-758
    • Gaspari, G.1    Cohn, S.E.2
  • 51
    • 56349129188 scopus 로고    scopus 로고
    • A nonlinear test model for filtering slow-fast systems
    • Gershgorin, B. and Majda, A. J. 2008. A nonlinear test model for filtering slow-fast systems. Comm. Math. Sci., 6(3), 611-649.
    • (2008) Comm. Math. Sci , vol.6 , Issue.3 , pp. 611-649
    • Gershgorin, B.1    Majda, A.J.2
  • 52
    • 77954691038 scopus 로고    scopus 로고
    • Filtering a nonlinear slow-fast system with strong fast forcing
    • Gershgorin, B. and Majda, A. J. 2010. Filtering a nonlinear slow-fast system with strong fast forcing. Comm. Math. Sci., 8(1), 67-92.
    • (2010) Comm. Math. Sci , vol.8 , Issue.1 , pp. 67-92
    • Gershgorin, B.1    Majda, A.J.2
  • 53
    • 78650533520 scopus 로고    scopus 로고
    • Filtering a statistically exactly solvable test model for turbulent tracers from partial observations
    • Gershgorin, B. and Majda, A. J. 2011. Filtering a statistically exactly solvable test model for turbulent tracers from partial observations. J. Comput. Phys., 230(4), 1602-1638.
    • (2011) J. Comput. Phys , vol.230 , Issue.4 , pp. 1602-1638
    • Gershgorin, B.1    Majda, A.J.2
  • 54
    • 70350427663 scopus 로고    scopus 로고
    • Improving filtering and prediction of spatially extended turbulent systems with model errors through stochastic parameter estimation
    • Gershgorin, B., Harlim, J. and Majda, A. J. 2010a. Improving filtering and prediction of spatially extended turbulent systems with model errors through stochastic parameter estimation. J. Comput. Phys., 229(1), 32-57.
    • (2010) J. Comput. Phys , vol.229 , Issue.1 , pp. 32-57
    • Gershgorin, B.1    Harlim, J.2    Majda, A.J.3
  • 55
    • 70350425221 scopus 로고    scopus 로고
    • Test models for improving filtering with model errors through stochastic parameter estimation
    • Gershgorin, B., Harlim, J. and Majda, A. J. 2010b. Test models for improving filtering with model errors through stochastic parameter estimation. J. Comput. Phys., 229(1), 1-31.
    • (2010) J. Comput. Phys , vol.229 , Issue.1 , pp. 1-31
    • Gershgorin, B.1    Harlim, J.2    Majda, A.J.3
  • 56
    • 33645807073 scopus 로고
    • Data assimilation in meteorology and oceanography
    • Ghil, M. and Malanotte-Rizolli, P. 1991. Data assimilation in meteorology and oceanography. Adv. Geophys., 33, 141-266.
    • (1991) Adv. Geophys , vol.33 , pp. 141-266
    • Ghil, M.1    Malanotte-Rizolli, P.2
  • 57
    • 33646747425 scopus 로고    scopus 로고
    • Stable time filtering of strongly unstable spatially extended systems
    • Grote, M. J. and Majda, A. J. 2006. Stable time filtering of strongly unstable spatially extended systems. Proce. Nat. Acad. Sci., 103, 7548-7553.
    • (2006) Proce. Nat. Acad. Sci , vol.103 , pp. 7548-7553
    • Grote, M.J.1    Majda, A.J.2
  • 58
    • 0002020829 scopus 로고
    • Analogy between higher instabilities in fluids and lasers
    • Haken, H. 1975. Analogy between higher instabilities in fluids and lasers. Phys. Lett. A, 53(1), 77-78.
    • (1975) Phys. Lett. A , vol.53 , Issue.1 , pp. 77-78
    • Haken, H.1
  • 59
    • 0035506430 scopus 로고    scopus 로고
    • Distance-dependent filtering of background error covariance estimates in an ensemble kalman filter
    • Hamill, T. M., Whitaker, J. S. and Snyder, C. 2001. Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Monthly Weather Rev., 129, 2776-2790.
    • (2001) Monthly Weather Rev , vol.129 , pp. 2776-2790
    • Hamill, T.M.1    Whitaker, J.S.2    Snyder, C.3
  • 61
    • 81555213063 scopus 로고    scopus 로고
    • Interpolating irregularly spaced observations for filtering turbulent complex systems
    • Harlim, J. 2011. Interpolating irregularly spaced observations for filtering turbulent complex systems. SIAM J. Sci. Comp., 33(5), 2620-2640.
    • (2011) SIAM J. Sci. Comp , vol.33 , Issue.5 , pp. 2620-2640
    • Harlim, J.1
  • 62
    • 34247587126 scopus 로고    scopus 로고
    • A non-gaussian ensemble filter for assimilating infrequent noisy observations
    • Harlim, J. and Hunt, B.R. 2007a. A non-Gaussian ensemble filter for assimilating infrequent noisy observations. Tellus A, 59(2), 225-237.
    • (2007) Tellus A , vol.59 , Issue.2 , pp. 225-237
    • Harlim, J.1    Hunt, B.R.2
  • 63
    • 34548704863 scopus 로고    scopus 로고
    • Four-dimensional local ensemble transform kalman filter: Numerical experiments with a global circulation model
    • Harlim, J. and Hunt, B.R. 2007b. Four-dimensional local ensemble transform Kalman filter: numerical experiments with a global circulation model. Tellus A, 59(5), 731-748.
    • (2007) Tellus , vol.59 , Issue.5 , pp. 731-748
    • Harlim, J.1    Hunt, B.R.2
  • 64
    • 44949245827 scopus 로고    scopus 로고
    • Filtering nonlinear dynamical systems with linear stochastic models
    • Harlim, J. and Majda, A. J. 2008a. Filtering nonlinear dynamical systems with linear stochastic models. Nonlinearity, 21(6), 1281-1306.
    • (2008) Nonlinearity , vol.21 , Issue.6 , pp. 1281-1306
    • Harlim, J.1    Majda, A.J.2
  • 65
    • 41249100391 scopus 로고    scopus 로고
    • Mathematical strategies for filtering complex systems: Regularly spaced sparse observations
    • Harlim, J. and Majda, A. J. 2008b. Mathematical strategies for filtering complex systems: Regularly spaced sparse observations. J. Comput. Phys., 227(10), 5304-5341.
    • (2008) J. Comput. Phys , vol.227 , Issue.10 , pp. 5304-5341
    • Harlim, J.1    Majda, A.J.2
  • 66
    • 77953316289 scopus 로고    scopus 로고
    • Catastrophic filter divergence in filtering nonlinear dissipative systems
    • Harlim, J. and Majda, A.J. 2010a. Catastrophic filter divergence in filtering nonlinear dissipative systems. Comm. Math. Sci., 8(1), 27-43.
    • (2010) Comm. Math. Sci , vol.8 , Issue.1 , pp. 27-43
    • Harlim, J.1    Majda, A.J.2
  • 67
    • 77955547132 scopus 로고    scopus 로고
    • Filtering turbulent sparsely observed geophysical flows
    • Harlim, J. and Majda, A. J. 2010b. Filtering turbulent sparsely observed geophysical flows. Monthly Weather Rev., 138(4), 1050-1083.
    • (2010) Monthly Weather Rev , vol.138 , Issue.4 , pp. 1050-1083
    • Harlim, J.1    Majda, A.J.2
  • 68
    • 25444532012 scopus 로고    scopus 로고
    • Quantifying predictability through information theory: Small sample estimation in a non-gaussian framework
    • Haven, K., Majda, A. J. and Abramov, R. 2005. Quantifying predictability through information theory: small sample estimation in a non-Gaussian framework. J. Comput. Phys., 206, 334-362.
    • (2005) J. Comput. Phys , vol.206 , pp. 334-362
    • Haven, K.1    Majda, A.J.2    Abramov, R.3
  • 69
    • 0035129828 scopus 로고    scopus 로고
    • A sequential ensemble kalman filter for atmospheric data assimilation
    • Houtekamer, P. L. and Mitchell, H.L. 2001. A sequential ensemble Kalman filter for atmospheric data assimilation. Monthly Weather Rev., 129, 123-137.
    • (2001) Monthly Weather Rev , vol.129 , pp. 123-137
    • Houtekamer, P.L.1    Mitchell, H.L.2
  • 70
    • 34248675795 scopus 로고    scopus 로고
    • Efficient data assimilation for spatiotemporal chaos: A local ensemble transform kalman filter
    • Hunt, B.R., Kostelich, E.J. and Szunyogh, I. 2007. Efficient data assimilation for spatiotemporal chaos: a local ensemble transform Kalman filter. Physica D, 230, 112-126.
    • (2007) Physica D , vol.230 , pp. 112-126
    • Hunt, B.R.1    Kostelich, E.J.2    Szunyogh, I.3
  • 76
    • 85024423711 scopus 로고
    • New results in linear prediction and filtering theory
    • Kalman, R.E. and Bucy, R. 1961. New results in linear prediction and filtering theory. Trans. AMSE J. Basic Eng., 83D, 95-108.
    • (1961) Trans. AMSE J. Basic Eng , vol.83 , pp. 95-108
    • Kalman, R.E.1    Bucy, R.2
  • 79
    • 84926082986 scopus 로고    scopus 로고
    • Filtering nonlinear spatio-temporal chaos with an autoregressive linear stochastic model
    • Submitted to
    • Kang, E. L. and Harlim, J. 2011. Filtering nonlinear spatio-temporal chaos with an autoregressive linear stochastic model. Submitted to Physica D.
    • (2011) Physica D
    • Kang, E.L.1    Harlim, J.2
  • 80
    • 84859903122 scopus 로고    scopus 로고
    • New methods for estimating poleward eddy heat transport using satellite altimetry
    • Submitted to
    • Keating, S.R., Majda, A.J. and Smith, K. S. 2011. New methods for estimating poleward eddy heat transport using satellite altimetry. Submitted to Monthly Weather Rev.
    • (2011) Monthly Weather Rev
    • Keating, S.R.1    Majda, A.J.2    Smith, K.S.3
  • 81
    • 0033912092 scopus 로고    scopus 로고
    • Data assimilation into a primitive-equation model with a parallel ensemble kalman filter
    • Keppenne, C.L. 2000. Data assimilation into a primitive-equation model with a parallel ensemble Kalman filter. Monthly Weather Rev., 128, 1971-1981.
    • (2000) Monthly Weather Rev , vol.128 , pp. 1971-1981
    • Keppenne, C.L.1
  • 82
    • 33646259476 scopus 로고    scopus 로고
    • A simple multicloud parametrization for convectively coupled tropical waves. Part i: Linear analysis
    • Khouider, B. and Majda, A. J. 2006. A simple multicloud parametrization for convectively coupled tropical waves. Part I: Linear Analysis. J. Atmos. Sci., 63, 1308-1323.
    • (2006) J. Atmos. Sci , vol.63 , pp. 1308-1323
    • Khouider, B.1    Majda, A.J.2
  • 83
    • 33847635570 scopus 로고    scopus 로고
    • A simple multicloud parametrization for convectively coupled tropical waves. Part ii: Nonlinear simulations
    • Khouider, B. and Majda, A. J. 2007. A simple multicloud parametrization for convectively coupled tropical waves. Part II: Nonlinear simulations. J. Atmos. Sci., 64, 381-400.
    • (2007) J. Atmos. Sci , vol.64 , pp. 381-400
    • Khouider, B.1    Majda, A.J.2
  • 84
    • 23744485056 scopus 로고    scopus 로고
    • Predictabiliy in a model of geophysical turbulence
    • Kleeman, R. and Majda, A. J. 2005. Predictabiliy in a model of geophysical turbulence. J. Atmos. Sci., 62, 2864-2879.
    • (2005) J. Atmos. Sci , vol.62 , pp. 2864-2879
    • Kleeman, R.1    Majda, A.J.2
  • 87
    • 84975888044 scopus 로고
    • Analysis methods for numerical weather prediction
    • Lorenc, A. C. 1986. Analysis methods for numerical weather prediction. Quart. J. Roy. Meteorol. Soc., 112, 1177-1194.
    • (1986) Quart. J. Roy. Meteorol. Soc , vol.112 , pp. 1177-1194
    • Lorenc, A.C.1
  • 88
    • 0347709927 scopus 로고    scopus 로고
    • The potential of the ensemble kalman filter for nwp-a comparison with 4d-var
    • Lorenc, A. C. 2003. The potential of the ensemble Kalman filter for NWP-a comparison with 4D-Var. Quart. J. Roy. Meteorol. Soc., 129, 3183-3203.
    • (2003) Quart. J. Roy. Meteorol. Soc , vol.129 , pp. 3183-3203
    • Lorenc, A.C.1
  • 89
    • 0000241853 scopus 로고
    • Deterministic nonperiodic flow
    • Lorenz, E. N. 1963. Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130-141.
    • (1963) J. Atmos. Sci , vol.20 , pp. 130-141
    • Lorenz, E.N.1
  • 90
    • 0001036009 scopus 로고
    • A study of the predictability of a 28-variable atmospheric model
    • Lorenz, E. N. 1965. A study of the predictability of a 28-variable atmospheric model. Tellus, 17, 321-333.
    • (1965) Tellus , vol.17 , pp. 321-333
    • Lorenz, E.N.1
  • 92
    • 0032004313 scopus 로고    scopus 로고
    • Optimal sites for supplementary weather observations: Simulations with a small model
    • Lorenz, E.N. and Emanuel, K. 1998. Optimal sites for supplementary weather observations: Simulations with a small model. J. Atmos. Sci., 55, 399-414.
    • (1998) J. Atmos. Sci , vol.55 , pp. 399-414
    • Lorenz, E.N.1    Emanuel, K.2
  • 93
    • 45149123279 scopus 로고    scopus 로고
    • Real world turbulence and modern applied mathematics
    • Arnold, V. I., Atiyah, M., Lax, P., and Mazur, B, American Mathematical Society, Providence, RI
    • Majda, A. J. 2000. Real world turbulence and modern applied mathematics. In: Arnold, V. I., Atiyah, M., Lax, P., and Mazur, B. (eds), Mathematics: Frontiers and Perspectives 2000. American Mathematical Society, Providence, RI, pp. 137-151.
    • (2000) Mathematics: Frontiers and Perspectives , vol.2000 , pp. 137-151
    • Majda, A.J.1
  • 94
    • 0141689565 scopus 로고    scopus 로고
    • Courant Lecture Notes in Mathematics, vol, American Mathematical Society, Providence, RI
    • Majda, A. J. 2003. Introduction to PDEs and Waves for the Atmosphere and Ocean. Courant Lecture Notes in Mathematics, vol. 9. American Mathematical Society, Providence, RI.
    • (2003) Introduction to Pdes and Waves for the Atmosphere and Ocean , pp. 9
    • Majda, A.J.1
  • 95
    • 79960015578 scopus 로고    scopus 로고
    • Elementary models for turbulent diffusion with complex physical features: Eddy diffusivity, spectrum, and intermittency
    • (in press)
    • Majda, A. J. and Gershgorin, B. 2011. Elementary models for turbulent diffusion with complex physical features: eddy diffusivity, spectrum, and intermittency. Phil. Trans. Roy. Soc., series B (in press).
    • (2011) Phil. Trans. Roy. Soc., Series B
    • Majda, A.J.1    Gershgorin, B.2
  • 96
    • 33846636049 scopus 로고    scopus 로고
    • Explicit off-line criteria for stable accurate time filtering of strongly unstable spatially extended systems
    • Majda, A. J. and Grote, M. J. 2007. Explicit off-line criteria for stable accurate time filtering of strongly unstable spatially extended systems. Proc. Nat. Acad. Sci., 104, 1124-1129.
    • (2007) Proc. Nat. Acad. Sci , vol.104 , pp. 1124-1129
    • Majda, A.J.1    Grote, M.J.2
  • 97
    • 0347601794 scopus 로고    scopus 로고
    • Simplified models for turbulent diffusion: Theory, numerical modeling, and physical phenomena
    • Majda, A. J. and Kramer, P. 1999. Simplified models for turbulent diffusion: theory, numerical modeling, and physical phenomena. Phys. Rep., 214, 238-574.
    • (1999) Phys. Rep , vol.214 , pp. 238-574
    • Majda, A.J.1    Kramer, P.2
  • 98
    • 0002023117 scopus 로고    scopus 로고
    • Statistical mechanics for truncations of the burgershopf equation: A model for intrinsic behavior with scaling
    • Majda, A. J. and Timofeyev, I. 2002. Statistical mechanics for truncations of the BurgersHopf equation: A model for intrinsic behavior with scaling. Milan J. Math., 70, 39-96.
    • (2002) Milan J. Math , vol.70 , pp. 39-96
    • Majda, A.J.1    Timofeyev, I.2
  • 99
    • 10644246719 scopus 로고    scopus 로고
    • Low dimensional chaotic dynamics versus intrinsic stochastic chaos: A paradigm model
    • Majda, A. J. and Timofeyev, I. 2004. Low dimensional chaotic dynamics versus intrinsic stochastic chaos: A paradigm model. Physica D, 199, 339-368.
    • (2004) Physica D , vol.199 , pp. 339-368
    • Majda, A.J.1    Timofeyev, I.2
  • 102
    • 45149101451 scopus 로고    scopus 로고
    • An applied mathematics perspective on stochastic modelling for climate
    • Majda, A. J., Franzke, C. and Khouider, B. 2008. An applied mathematics perspective on stochastic modelling for climate. Phil. Trans. A Math. Phys. Eng Sci., 366(1875), 2429-2455.
    • (2008) Phil. Trans. A Math. Phys. Eng Sci , vol.366 , Issue.1875 , pp. 2429-2455
    • Majda, A.J.1    Franzke, C.2    Khouider, B.3
  • 103
    • 77949738950 scopus 로고    scopus 로고
    • Low-frequency climate response and fluctuation-dissipation theorems: Theory and practice
    • Majda, A.J., Gershgorin, B. and Yuan, Y. 2009. Low-frequency climate response and fluctuation-dissipation theorems: Theory and practice. J. Atmos. Sci. 67, 1186-1201.
    • (2009) J. Atmos. Sci , vol.67 , pp. 1186-1201
    • Majda, A.J.1    Gershgorin, B.2    Yuan, Y.3
  • 106
    • 0043127074 scopus 로고    scopus 로고
    • Systematic strategies for stochastic mode reduction in climate
    • Majda, A. J., Timofeyev, I. and Vanden-Eijnden, E. 2003. Systematic strategies for stochastic mode reduction in climate. J. Atmos. Sci., 60, 1705-1722.
    • (2003) J. Atmos. Sci , vol.60 , pp. 1705-1722
    • Majda, A.J.1    Timofeyev, I.2    Vanden-Eijnden, E.3
  • 107
    • 33645101025 scopus 로고    scopus 로고
    • Stochastic models for selected slow variables in large deterministic systems
    • Majda, A. J., Timofeyev, I. and Vanden-Eijnden, E. 2006. Stochastic models for selected slow variables in large deterministic systems. Nonlinearity, 19, 769-794.
    • (2006) Nonlinearity , vol.19 , pp. 769-794
    • Majda, A.J.1    Timofeyev, I.2    Vanden-Eijnden, E.3
  • 108
    • 0032764305 scopus 로고    scopus 로고
    • Data assimilation into nonlinear stochastic models
    • Miller, R. N., Carter, E. F. and Blue, S. T. 1999. Data assimilation into nonlinear stochastic models. Tellus A, 51(2), 167-194.
    • (1999) Tellus A , vol.51 , Issue.2 , pp. 167-194
    • Miller, R.N.1    Carter, E.F.2    Blue, S.T.3
  • 109
    • 0036853557 scopus 로고    scopus 로고
    • Ensemble size and model-error representation in an ensemble kalman filter
    • Mitchell, H.L., Houtekamer, P. L. and Pellerin, G. 2002. Ensemble size and model-error representation in an ensemble Kalman filter. Monthly Weather Rev., 130, 2791-2808.
    • (2002) Monthly Weather Rev , vol.130 , pp. 2791-2808
    • Mitchell, H.L.1    Houtekamer, P.L.2    Pellerin, G.3
  • 111
    • 57149126050 scopus 로고    scopus 로고
    • Comparison of statistical dynamical, square root and ensemble kalman filters
    • O’Kane, T. J. and Frederiksen, J. S. 2008. Comparison of statistical dynamical, square root and ensemble Kalman filters. Entropy, 10(4), 684-721.
    • (2008) Entropy , vol.10 , Issue.4 , pp. 684-721
    • O’ Kane, T.J.1    Frederiksen, J.S.2
  • 114
    • 0027040023 scopus 로고
    • The national meteorological centers spectral statistical-interpolation analysis system
    • Parrish, D. F. and Derber, J. C. 1992. The National Meteorological Centers spectral statistical-interpolation analysis system. Monthly Weather Rev., 120(8), 1747-1763.
    • (1992) Monthly Weather Rev , vol.120 , Issue.8 , pp. 1747-1763
    • Parrish, D.F.1    Derber, J.C.2
  • 116
    • 0010385470 scopus 로고
    • Application of stochastic dynamic prediction to real data
    • Pitcher, E. J. 1977. Application of stochastic dynamic prediction to real data. J. Atmos. Sci., 34(1), 3-21.
    • (1977) J. Atmos. Sci , vol.34 , Issue.1 , pp. 3-21
    • Pitcher, E.J.1
  • 118
    • 35348873118 scopus 로고    scopus 로고
    • Nonlinear filtering in discrete time: A particle convolution approach
    • Rossi, V. and Vila, J.-P. 2006. Nonlinear filtering in discrete time: A particle convolution approach. Ann. Inst. Stat. Univ Paris, 3, 71-102.
    • (2006) Ann. Inst. Stat. Univ Paris , vol.3 , pp. 71-102
    • Rossi, V.1    Vila, J.-P.2
  • 127
    • 0028582473 scopus 로고
    • Tracking atmospheric instabilities with the kalman filter. Part i: Methodology and one-layer results
    • Todling, R. and Ghil, M. 1994. Tracking atmospheric instabilities with the Kalman filter. Part I: Methodology and one-layer results. Monthly Weather Rev., 122(1), 183-204.
    • (1994) Monthly Weather Rev , vol.122 , Issue.1 , pp. 183-204
    • Todling, R.1    Ghil, M.2
  • 128
    • 0024189823 scopus 로고
    • The reliability of improvements in deterministic short-range forecasts in the presence of initial state and modeling deficiencies
    • Tribbia, J. J. and Baumhefner, D. P 1988. The reliability of improvements in deterministic short-range forecasts in the presence of initial state and modeling deficiencies. Monthly Weather Rev., 116, 2276-2288.
    • (1988) Monthly Weather Rev , vol.116 , pp. 2276-2288
    • Tribbia, J.J.1    Baumhefner, D.P.2
  • 130
    • 74949130817 scopus 로고    scopus 로고
    • Particle filtering in geosciences
    • van Leeuwen, P. J. 2009. Particle filtering in geosciences. Monthly Weather Rev., 137, 4089-4114.
    • (2009) Monthly Weather Rev , vol.137 , pp. 4089-4114
    • Van Leeuwen, P.J.1
  • 131
    • 3943069649 scopus 로고    scopus 로고
    • Which is better, an ensemble of positivenegative pairs or a centered spherical simplex ensemble?
    • Wang, X., Bishop, C.H. and Julier, S. J. 2004. Which is better, an ensemble of positivenegative pairs or a centered spherical simplex ensemble? Monthly Weather Rev., 132(7), 1590-1605.
    • (2004) Monthly Weather Rev , vol.132 , Issue.7 , pp. 1590-1605
    • Wang, X.1    Bishop, C.H.2    Julier, S.J.3
  • 132
    • 0036646009 scopus 로고    scopus 로고
    • Ensemble data assimilation without perturbed observations
    • Whitaker, J. S. and Hamill, T.M. 2002. Ensemble data assimilation without perturbed observations. Monthly Weather Rev., 130, 1913-1924.
    • (2002) Monthly Weather Rev , vol.130 , pp. 1913-1924
    • Whitaker, J.S.1    Hamill, T.M.2
  • 133
    • 33749267473 scopus 로고    scopus 로고
    • Data assimilation as synchronization of truth and model: Experiments with the three-variable lorenz system
    • Yang, S.-C., Baker, D., Cordes, K., Huff, M., Nagpal, F., Okereke, E., Villafane, J., Kalnay, E. and Duane, G. S. 2006. Data assimilation as synchronization of truth and model: experiments with the three-variable Lorenz system. J. Atmos. Sci., 63(9), 2340-2354.
    • (2006) J. Atmos. Sci , vol.63 , Issue.9 , pp. 2340-2354
    • Yang, S.-C.1    Baker, D.2    Cordes, K.3    Huff, M.4    Nagpal, F.5    Okereke, E.6    Villafane, J.7    Kalnay, E.8    Duane, G.S.9
  • 134
    • 0141450378 scopus 로고    scopus 로고
    • What are srb measures, and which dynamical systems have them?
    • Young, L.-S. 2002. What are SRB measures, and which dynamical systems have them? J. Statist. Phys, 108(5), 733-754.
    • (2002) J. Statist. Phys , vol.108 , Issue.5 , pp. 733-754
    • Young, L.-S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.