메뉴 건너뛰기




Volumn 138, Issue 8, 2010, Pages 2997-3023

Beyond gaussian statistical modeling in geophysical data assimilation

Author keywords

[No Author keywords available]

Indexed keywords

ATMOSPHERIC CHEMISTRY; BAYESIAN NETWORKS; GAUSSIAN NOISE (ELECTRONIC); GEOPHYSICS; KALMAN FILTERS; MAXIMUM ENTROPY METHODS; STATISTICAL MECHANICS; STATISTICAL METHODS;

EID: 77955429089     PISSN: 00270644     EISSN: None     Source Type: Journal    
DOI: 10.1175/2010MWR3164.1     Document Type: Review
Times cited : (196)

References (125)
  • 1
    • 0033500692 scopus 로고    scopus 로고
    • A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts
    • Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 2741-2758.
    • (1999) Mon. Wea. Rev. , vol.127 , pp. 2741-2758
    • Anderson, J.L.1    Anderson, S.L.2
  • 2
    • 0000923503 scopus 로고
    • Asymptotic theory of certain "goodness of fit", criteria based on stochastic processes
    • Anderson, T. W., and D. A. Darling, 1952: Asymptotic theory of certain "goodness of fit" criteria based on stochastic processes. Ann. Math. Stat., 23, 193-212.
    • (1952) Ann. Math. Stat. , vol.23 , pp. 193-212
    • Anderson, T.W.1    Darling, D.A.2
  • 5
    • 34547702888 scopus 로고    scopus 로고
    • Analysis and forecast impact of the main humidity observing systems
    • Coauthors
    • Andersson, E., and Coauthors, 2007: Analysis and forecast impact of the main humidity observing systems. Quart. J. Roy. Meteor. Soc., 133, 1473-1485.
    • (2007) Quart. J. Roy. Meteor. Soc. , vol.133 , pp. 1473-1485
    • Andersson, E.1
  • 6
    • 36749091934 scopus 로고    scopus 로고
    • Generalization of the dual variational data assimilation algorithm to a nonlinear layered quasi-geostrophic ocean model
    • Auroux, D., 2007: Generalization of the dual variational data assimilation algorithm to a nonlinear layered quasi-geostrophic ocean model. Inverse Probl., 23, 2485-2503.
    • (2007) Inverse Probl , vol.23 , pp. 2485-2503
    • Auroux, D.1
  • 9
    • 1642360010 scopus 로고    scopus 로고
    • Toward a nonlinear ensemble filter for high-dimensional systems
    • doi:10.1029/2002JD002900
    • Bengtsson, T., C. Snyder, and D. Nychka, 2003: Toward a nonlinear ensemble filter for high-dimensional systems. J. Geophys. Res., 108, 8775, doi:10.1029/2002JD002900.
    • (2003) J. Geophys. Res. , vol.108 , pp. 8775
    • Bengtsson, T.1    Snyder, C.2    Nychka, D.3
  • 10
    • 34248674024 scopus 로고    scopus 로고
    • Approximate importance sampling Monte Carlo for data assimilation
    • Berliner, M. L., and C. K. Wikle, 2007: Approximate importance sampling Monte Carlo for data assimilation. Physica D, 230, 37-49.
    • (2007) Physica D , vol.230 , pp. 37-49
    • Berliner, M.L.1    Wikle, C.K.2
  • 11
    • 0041677592 scopus 로고    scopus 로고
    • Sequential data assimilation techniques in oceanography
    • Bertino, L., G. Evensen, and H. Wackernagel, 2003: Sequential data assimilation techniques in oceanography. Int. Stat. Rev., 71, 223-241.
    • (2003) Int. Stat. Rev. , vol.71 , pp. 223-241
    • Bertino, L.1    Evensen, G.2    Wackernagel, H.3
  • 12
    • 0035270690 scopus 로고    scopus 로고
    • Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects
    • Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420-436.
    • (2001) Mon. Wea. Rev. , vol.129 , pp. 420-436
    • Bishop, C.H.1    Etherton, B.J.2    Majumdar, S.J.3
  • 13
    • 14944379070 scopus 로고    scopus 로고
    • Grid resolution dependence in the reconstruction of an atmospheric tracer source
    • Bocquet, M., 2005a: Grid resolution dependence in the reconstruction of an atmospheric tracer source. Nonlinear Processes Geophys., 12, 219-234.
    • (2005) Nonlinear Processes Geophys , vol.12 , pp. 219-234
    • Bocquet, M.1
  • 14
    • 27144454495 scopus 로고    scopus 로고
    • Reconstruction of an atmospheric tracer source using the principle of maximum entropy. I: Theory
    • Bocquet, M., 2005b: Reconstruction of an atmospheric tracer source using the principle of maximum entropy. I: Theory. Quart. J. Roy. Meteor. Soc., 131, 2191-2208.
    • (2005) Quart. J. Roy. Meteor. Soc. , vol.131 , pp. 2191-2208
    • Bocquet, M.1
  • 15
    • 14944367202 scopus 로고    scopus 로고
    • Reconstruction of an atmospheric tracer source using the principle of maximum entropy. II: Applications
    • Bocquet, M., 2005c: Reconstruction of an atmospheric tracer source using the principle of maximum entropy. II: Applications. Quart. J. Roy. Meteor. Soc., 131, 2209-2223.
    • (2005) Quart. J. Roy. Meteor. Soc. , vol.131 , pp. 2209-2223
    • Bocquet, M.1
  • 16
    • 34447627513 scopus 로고    scopus 로고
    • High resolution reconstruction of a tracer dispersion event
    • Bocquet, M., 2007: High resolution reconstruction of a tracer dispersion event. Quart. J. Roy. Meteor. Soc., 133, 1013-1026.
    • (2007) Quart. J. Roy. Meteor. Soc. , vol.133 , pp. 1013-1026
    • Bocquet, M.1
  • 17
    • 39549113856 scopus 로고    scopus 로고
    • Inverse modelling of atmospheric tracers: Non-Gaussian methods and second-order sensitivity analysis
    • Bocquet, M., 2008: Inverse modelling of atmospheric tracers: Non-Gaussian methods and second-order sensitivity analysis. Nonlinear Processes Geophys., 15, 127-143.
    • (2008) Nonlinear Processes Geophys , vol.15 , pp. 127-143
    • Bocquet, M.1
  • 19
    • 77953851971 scopus 로고    scopus 로고
    • Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One-month experiments with real observations
    • Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One-month experiments with real observations. Mon. Wea. Rev., 138, 1567-1586.
    • (2010) Mon. Wea. Rev. , vol.138 , pp. 1567-1586
    • Buehner, M.1    Houtekamer, P.L.2    Charette, C.3    Mitchell, H.L.4    He, B.5
  • 20
    • 0033399054 scopus 로고    scopus 로고
    • Targeted observations using singular vectors
    • Buizza, R., and A. Montani, 1999: Targeted observations using singular vectors. J. Atmos. Sci., 56, 2965-2985.
    • (1999) J. Atmos. Sci. , vol.56 , pp. 2965-2985
    • Buizza, R.1    Montani, A.2
  • 21
    • 0032439201 scopus 로고    scopus 로고
    • Analysis scheme in the ensemble Kalman filter
    • Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 1719-1724.
    • (1998) Mon. Wea. Rev. , vol.126 , pp. 1719-1724
    • Burgers, G.1    Van Leeuwen, P.J.2    Evensen, G.3
  • 22
    • 0030424167 scopus 로고    scopus 로고
    • Mapping tropical Pacific sea level: Data assimilation via a reduced state space Kalman filter
    • Cane, M. A., A. Kaplan, R. N. Miller, B. Y. Tang, E. C. Hackert, and A. J. Busalacchi, 1996: Mapping tropical Pacific sea level: Data assimilation via a reduced state space Kalman filter. J. Geophys. Res., 101 (C10), 22 599-22 617.
    • (1996) J. Geophys. Res. , vol.101 , Issue.C10
    • Cane, M.A.1    Kaplan, A.2    Miller, R.N.3    Tang, B.Y.4    Hackert, E.C.5    Busalacchi, A.J.6
  • 23
    • 33846324702 scopus 로고    scopus 로고
    • Adaptive observations and assimilation in the unstable subspace by breeding on the data-assimilation system
    • Carrassi, A., A. Trevisan, and F. Uboldi, 2007: Adaptive observations and assimilation in the unstable subspace by breeding on the data-assimilation system. Tellus, 59A, 101-113.
    • (2007) Tellus , vol.59 A , pp. 101-113
    • Carrassi, A.1    Trevisan, A.2    Uboldi, F.3
  • 24
    • 46449116212 scopus 로고    scopus 로고
    • Data assimilation as a nonlinear dynamical systems problem: Stability and convergence of the prediction-assimilation system
    • Carrassi, A., M. Ghil, A. Trevisan, and F. Uboldi, 2008: Data assimilation as a nonlinear dynamical systems problem: Stability and convergence of the prediction-assimilation system. Chaos, 18, 023112.
    • (2008) Chaos , vol.18 , pp. 023112
    • Carrassi, A.1    Ghil, M.2    Trevisan, A.3    Uboldi, F.4
  • 25
    • 33645500221 scopus 로고    scopus 로고
    • Diagnosis and tuning of observational error in a quasi-operational data assimilation setting
    • Chapnik, B., G. Desroziers, F. Rabier, and O. Talagrand, 2006: Diagnosis and tuning of observational error in a quasi-operational data assimilation setting. Quart. J. Roy. Meteor. Soc., 132, 543-565.
    • (2006) Quart. J. Roy. Meteor. Soc. , vol.132 , pp. 543-565
    • Chapnik, B.1    Desroziers, G.2    Rabier, F.3    Talagrand, O.4
  • 26
    • 0001482955 scopus 로고    scopus 로고
    • An introduction to estimation theory
    • Cohn, S. E., 1997: An introduction to estimation theory. J. Meteor. Soc. Japan, 75, 257-288.
    • (1997) J. Meteor. Soc. Japan , vol.75 , pp. 257-288
    • Cohn, S.E.1
  • 27
    • 0032999493 scopus 로고    scopus 로고
    • Assessing the effects of data selection with the DAO physical-space statistical analysis system
    • Cohn, S. E., A. da Silva, J. Guo, M. Sienkiewicz, and D. Lamich, 1998: Assessing the effects of data selection with the DAO physical-space statistical analysis system. Mon. Wea. Rev., 126, 2913-2926.
    • (1998) Mon. Wea. Rev. , vol.126 , pp. 2913-2926
    • Cohn, S.E.1    Da Silva, A.2    Guo, J.3    Sienkiewicz, M.4    Lamich, D.5
  • 28
    • 0000980873 scopus 로고    scopus 로고
    • Dual formulation of four-dimensional varia-tional assimilation
    • Courtier, P., 1997: Dual formulation of four-dimensional varia-tional assimilation. Quart. J. Roy. Meteor. Soc., 123, 2449-2461.
    • (1997) Quart. J. Roy. Meteor. Soc. , vol.123 , pp. 2449-2461
    • Courtier, P.1
  • 29
    • 0023123538 scopus 로고
    • Variational assimilation of meteorological observation with the adjoint vorticity equation. II: Numerical results
    • Courtier, P., and O. Talagrand, 1987: Variational assimilation of meteorological observation with the adjoint vorticity equation. II: Numerical results. Quart. J. Roy. Meteor. Soc., 113, 1329-1347.
    • (1987) Quart. J. Roy. Meteor. Soc. , vol.113 , pp. 1329-1347
    • Courtier, P.1    Talagrand, O.2
  • 30
    • 84889281816 scopus 로고
    • Wiley Series in Telecommunications, Wiley-Interscience
    • Cover, T. M., and J. A. Thomas, 1991: Elements of Information Theory. Wiley Series in Telecommunications, Wiley-Interscience, 542 pp.
    • (1991) Elements of Information Theory , pp. 542
    • Cover, T.M.1    Thomas, J.A.2
  • 31
    • 1942455755 scopus 로고    scopus 로고
    • Adaptive observations in the context of 4D-Var data assimilation
    • Daescu, D. N., and I. M. Navon, 2004: Adaptive observations in the context of 4D-Var data assimilation. Meteor. Atmos. Sci., 85, 205-226.
    • (2004) Meteor. Atmos. Sci. , vol.85 , pp. 205-226
    • Daescu, D.N.1    Navon, I.M.2
  • 32
    • 33947546953 scopus 로고    scopus 로고
    • Inverse modelling-based reconstruction of the Chernobyl source term available for long-range transport
    • Davoine, X., and M. Bocquet, 2007: Inverse modelling-based reconstruction of the Chernobyl source term available for long-range transport. Atmos. Chem. Phys., 7, 1549-1564.
    • (2007) Atmos. Chem. Phys. , vol.7 , pp. 1549-1564
    • Davoine, X.1    Bocquet, M.2
  • 34
    • 69749084907 scopus 로고    scopus 로고
    • Diagnosis of observation, background and analysis-error statistics in observation space
    • Desroziers, G., L. Berre, B. Chapnik, and P. Poli, 2005: Diagnosis of observation, background and analysis-error statistics in observation space. Quart. J. Roy. Meteor. Soc., 131, 3385-3396.
    • (2005) Quart. J. Roy. Meteor. Soc. , vol.131 , pp. 3385-3396
    • Desroziers, G.1    Berre, L.2    Chapnik, B.3    Poli, P.4
  • 35
    • 0001460136 scopus 로고    scopus 로고
    • On sequential Monte Carlo sampling methods for Bayesian filtering
    • Doucet, A., S. Godsill, and C. Andrieu, 2000: On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput., 10, 197-208.
    • (2000) Stat. Comput. , vol.10 , pp. 197-208
    • Doucet, A.1    Godsill, S.2    Andrieu, C.3
  • 36
    • 77958514994 scopus 로고    scopus 로고
    • Doucet, A., N. de Freitas, and N. Gordon, Eds. Springer-Verlag
    • Doucet, A., N. de Freitas, and N. Gordon, Eds., 2001: Sequential Monte Carlo Methods in Practice. Springer-Verlag, 612 pp.
    • (2001) Sequential Monte Carlo Methods in Practice , pp. 612
  • 37
    • 0028193070 scopus 로고
    • Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics
    • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 (C5), 10 143-10 162.
    • (1994) J. Geophys. Res. , vol.99 , Issue.C5
    • Evensen, G.1
  • 38
    • 0031166563 scopus 로고    scopus 로고
    • Advanced data assimilation for strongly nonlinear dynamics
    • Evensen, G., 1997: Advanced data assimilation for strongly nonlinear dynamics. Mon. Wea. Rev., 125, 1342-1354.
    • (1997) Mon. Wea. Rev. , vol.125 , pp. 1342-1354
    • Evensen, G.1
  • 39
    • 84884550570 scopus 로고    scopus 로고
    • The ensemble Kalman filter: Theoretical formulation and practical implementation
    • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343-367.
    • (2003) Ocean Dyn , vol.53 , pp. 343-367
    • Evensen, G.1
  • 40
    • 33746876696 scopus 로고    scopus 로고
    • A maximum entropy method for particle filtering
    • Eyink, G. L., and S. Kim, 2006: A maximum entropy method for particle filtering. J. Stat. Phys., 123, 1071-1128.
    • (2006) J. Stat. Phys. , vol.123 , pp. 1071-1128
    • Eyink, G.L.1    Kim, S.2
  • 41
    • 33846861503 scopus 로고    scopus 로고
    • On the equivalence between Kalman smoothing and weak-constraint four-dimensional variational data assimilation
    • Fisher, M., M. Leutbecher, and G. A. Kelly, 2005: On the equivalence between Kalman smoothing and weak-constraint four-dimensional variational data assimilation. Quart. J. Roy. Meteor. Soc., 131, 3235-3246.
    • (2005) Quart. J. Roy. Meteor. Soc. , vol.131 , pp. 3235-3246
    • Fisher, M.1    Leutbecher, M.2    Kelly, G.A.3
  • 42
    • 33745223678 scopus 로고    scopus 로고
    • A data assimilation method for log-normally distributed observational errors
    • Fletcher, S. J., and M. Zupanski, 2006: A data assimilation method for log-normally distributed observational errors. Quart. J.Roy. Meteor. Soc., 132, 2505-2519.
    • (2006) Quart. J.Roy. Meteor. Soc. , vol.132 , pp. 2505-2519
    • Fletcher, S.J.1    Zupanski, M.2
  • 43
    • 34249707809 scopus 로고    scopus 로고
    • Surface data assimilation using an ensemble Kalman filter approach with initial condition and model physics uncertainties
    • Fujita, T., D. J. Stensrud, and D. C. Dowell, 2007: Surface data assimilation using an ensemble Kalman filter approach with initial condition and model physics uncertainties. Mon. Wea. Rev., 135, 1846-1868.
    • (2007) Mon. Wea. Rev. , vol.135 , pp. 1846-1868
    • Fujita, T.1    Stensrud, D.J.2    Dowell, D.C.3
  • 45
    • 0033023511 scopus 로고    scopus 로고
    • Construction of correlation functions in two and three dimensions
    • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723-757.
    • (1999) Quart. J. Roy. Meteor. Soc. , vol.125 , pp. 723-757
    • Gaspari, G.1    Cohn, S.E.2
  • 46
    • 0026497736 scopus 로고
    • Chaos and quadri-dimensional data assimilation: A study based on the Lorenz model
    • Gauthier, P., 1992: Chaos and quadri-dimensional data assimilation: A study based on the Lorenz model. Tellus, 44A, 2-17.
    • (1992) Tellus , vol.44 A , pp. 2-17
    • Gauthier, P.1
  • 47
    • 0035648076 scopus 로고    scopus 로고
    • Following a moving target-Monte Carlo inference for dynamic Bayesian models
    • Gilks, W. R., and C. Berzuini, 2001: Following a moving target-Monte Carlo inference for dynamic Bayesian models. J. Roy. Stat. Soc. B, 63, 127-146.
    • (2001) J. Roy. Stat. Soc. B , vol.63 , pp. 127-146
    • Gilks, W.R.1    Berzuini, C.2
  • 48
    • 0027580559 scopus 로고
    • Novel approach to nonlinear/non-Gaussian Bayesian state estimation
    • Gordon, N. J., D. J. Salmond, and A. F. M. Smith, 1993: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F, 140, 107-113.
    • (1993) IEE Proc. F , vol.140 , pp. 107-113
    • Gordon, N.J.1    Salmond, D.J.2    Smith, A.F.M.3
  • 49
    • 0035506430 scopus 로고    scopus 로고
    • Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter
    • Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 2776-2790.
    • (2001) Mon. Wea. Rev. , vol.129 , pp. 2776-2790
    • Hamill, T.M.1    Whitaker, J.S.2    Snyder, C.3
  • 50
    • 84874286884 scopus 로고
    • Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering
    • Handschin, J., and D. Mayne, 1969: Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering. Int. J. Control, 9, 547-559.
    • (1969) Int. J. Control , vol.9 , pp. 547-559
    • Handschin, J.1    Mayne, D.2
  • 51
    • 34247587126 scopus 로고    scopus 로고
    • A non-Gaussian ensemble filter for assimilating infrequent noisy observations
    • Harlim, J., and B. R. Hunt, 2007: A non-Gaussian ensemble filter for assimilating infrequent noisy observations. Tellus, 59A, 225-237.
    • (2007) Tellus , vol.59 A , pp. 225-237
    • Harlim, J.1    Hunt, B.R.2
  • 52
    • 25444532012 scopus 로고    scopus 로고
    • Quantifying predictability through information theory: Small sample estimation in a non-Gaussian framework
    • Haven, K., A. Majda, and R. Abramov, 2005: Quantifying predictability through information theory: Small sample estimation in a non-Gaussian framework. J. Comput. Phys., 206, 334-362.
    • (2005) J. Comput. Phys. , vol.206 , pp. 334-362
    • Haven, K.1    Majda, A.2    Abramov, R.3
  • 53
    • 0035391382 scopus 로고    scopus 로고
    • Variance reduced ensemble Kalman filtering
    • Heemink, A. W., M. Verlaan, and A. J. Segers, 2001: Variance reduced ensemble Kalman filtering. Mon. Wea. Rev., 129, 1718-1728.
    • (2001) Mon. Wea. Rev. , vol.129 , pp. 1718-1728
    • Heemink, A.W.1    Verlaan, M.2    Segers, A.J.3
  • 56
    • 61449223491 scopus 로고    scopus 로고
    • A reduced-order simulated annealing approach for four-dimensional variational data assimilation in meteorology and oceanography
    • Hoteit, I., 2008: A reduced-order simulated annealing approach for four-dimensional variational data assimilation in meteorology and oceanography. Int. J. Numer. Methods Fluids, 58, 1181-1199.
    • (2008) Int. J. Numer. Methods Fluids , vol.58 , pp. 1181-1199
    • Hoteit, I.1
  • 57
    • 39749100695 scopus 로고    scopus 로고
    • A new approximate solution of the optimal nonlinear filter for data assimilation in meteorology and oceanography
    • Hoteit, I., D.-T. Pham, G. Triantafyllou, and G. Korres, 2008: A new approximate solution of the optimal nonlinear filter for data assimilation in meteorology and oceanography. Mon. Wea. Rev., 136, 317-334.
    • (2008) Mon. Wea. Rev. , vol.136 , pp. 317-334
    • Hoteit, I.1    Pham, D.-T.2    Triantafyllou, G.3    Korres, G.4
  • 58
    • 0032024819 scopus 로고    scopus 로고
    • Data assimilation using an ensemble Kalman filter technique
    • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796-811.
    • (1998) Mon. Wea. Rev. , vol.126 , pp. 796-811
    • Houtekamer, P.L.1    Mitchell, H.L.2
  • 59
    • 0035129828 scopus 로고    scopus 로고
    • A sequential ensemble Kalman filter for atmospheric data assimilation
    • Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129, 123-137.
    • (2001) Mon. Wea. Rev. , vol.129 , pp. 123-137
    • Houtekamer, P.L.1    Mitchell, H.L.2
  • 61
    • 70350302252 scopus 로고    scopus 로고
    • Model error representation in an operational ensemble Kalman filter
    • Houtekamer, P. L., H. L. Mitchell, and X. Deng, 2009: Model error representation in an operational ensemble Kalman filter. Mon. Wea. Rev., 137, 2126-2143.
    • (2009) Mon. Wea. Rev. , vol.137 , pp. 2126-2143
    • Houtekamer, P.L.1    Mitchell, H.L.2    Deng, X.3
  • 62
    • 0001033261 scopus 로고
    • Robust regression: Asymptotics, conjectures, and Monte Carlo
    • Huber, P. J., 1973: Robust regression: Asymptotics, conjectures, and Monte Carlo. Ann. Stat., 1, 799-821.
    • (1973) Ann. Stat. , vol.1 , pp. 799-821
    • Huber, P.J.1
  • 63
    • 3843055922 scopus 로고    scopus 로고
    • Four-dimensional ensemble Kalman filtering
    • Hunt, B. R., and Coauthors, 2004: Four-dimensional ensemble Kalman filtering. Tellus, 56A, 273-277.
    • (2004) Tellus , vol.56 A , pp. 273-277
    • Hunt, B.R.1
  • 64
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • Hyvärinen, A., and E. Oja, 2000: Independent component analysis: Algorithms and applications. Neural Networks, 13, 411-430.
    • (2000) Neural Networks , vol.13 , pp. 411-430
    • Hyvärinen, A.1    Oja, E.2
  • 65
    • 22444452396 scopus 로고    scopus 로고
    • Unified notation for data assimilation: Operational, sequential and variational
    • Ide, K., P. Courtier, M. Ghil, and A. Lorenc, 1999: Unified notation for data assimilation: Operational, sequential and variational. J. Meteor. Soc. Japan, 75, 181-189.
    • (1999) J. Meteor. Soc. Japan , vol.75 , pp. 181-189
    • Ide, K.1    Courtier, P.2    Ghil, M.3    Lorenc, A.4
  • 68
    • 84950459387 scopus 로고
    • Non-Gaussian state-space modeling of non-stationary time series
    • Kitagawa, G., 1987: Non-Gaussian state-space modeling of non-stationary time series. J. Amer. Stat. Assoc., 82, 1032-1063.
    • (1987) J. Amer. Stat. Assoc. , vol.82 , pp. 1032-1063
    • Kitagawa, G.1
  • 69
    • 0036646756 scopus 로고    scopus 로고
    • Measuring dynamical prediction utility using relative entropy
    • Kleeman, R., 2002: Measuring dynamical prediction utility using relative entropy. J. Atmos. Sci., 59, 2057-2072.
    • (2002) J. Atmos. Sci. , vol.59 , pp. 2057-2072
    • Kleeman, R.1
  • 70
    • 34248656231 scopus 로고    scopus 로고
    • Statitical predictibility in the atmosphere and other dynamical systems
    • Kleeman, R., 2007: Statitical predictibility in the atmosphere and other dynamical systems. Physica D, 230, 65-71.
    • (2007) Physica D , vol.230 , pp. 65-71
    • Kleeman, R.1
  • 71
    • 0027842301 scopus 로고
    • Simulated annealing: A tool for data assimilation into an almost steady model state
    • Krüger, J., 1993: Simulated annealing: A tool for data assimilation into an almost steady model state. J. Phys. Oceanogr., 23, 679-688.
    • (1993) J. Phys. Oceanogr. , vol.23 , pp. 679-688
    • Krüger, J.1
  • 72
    • 33947493679 scopus 로고    scopus 로고
    • Source reconstruction of an accidental radionuclide release at European scale
    • Krysta, M., and M. Bocquet, 2007: Source reconstruction of an accidental radionuclide release at European scale. Quart. J. Roy. Meteor. Soc., 133, 529-544.
    • (2007) Quart. J. Roy. Meteor. Soc. , vol.133 , pp. 529-544
    • Krysta, M.1    Bocquet, M.2
  • 74
    • 0032463381 scopus 로고    scopus 로고
    • A validation of the incremental formulation of 4D variational data assimilation in a nonlinear barotropic flow
    • Laroche, S., and P. Gauthier, 1998: A validation of the incremental formulation of 4D variational data assimilation in a nonlinear barotropic flow. Tellus, 50A, 557-572.
    • (1998) Tellus , vol.50 A , pp. 557-572
    • Laroche, S.1    Gauthier, P.2
  • 75
    • 59249093765 scopus 로고    scopus 로고
    • A truncated Gaussian filter for data assimilation with inequality constraints: Application to the hydrostatic stability condition in ocean models
    • Lauvernet, C., J.-M. Brankart, F. Castruccio, G. Broquet, P. Braseur, and J. Verron, 2009: A truncated Gaussian filter for data assimilation with inequality constraints: Application to the hydrostatic stability condition in ocean models. Ocean Modell., 27, 1-17.
    • (2009) Ocean Modell , vol.27 , pp. 1-17
    • Lauvernet, C.1    Brankart, J.-M.2    Castruccio, F.3    Broquet, G.4    Braseur, P.5    Verron, J.6
  • 76
    • 4444303259 scopus 로고    scopus 로고
    • Implications of stochastic and determinisitic filters as ensemble-based data assimilation methods in varying regimes of error growth
    • Lawson, W. G., and J. A. Hansen, 2004: Implications of stochastic and determinisitic filters as ensemble-based data assimilation methods in varying regimes of error growth. Mon. Wea. Rev., 132, 1966-1981.
    • (2004) Mon. Wea. Rev. , vol.132 , pp. 1966-1981
    • Lawson, W.G.1    Hansen, J.A.2
  • 77
    • 0022842584 scopus 로고
    • Variational algotrithms for analysis and assimilation of meteorological observations: Theoretical aspects
    • Le Dimet, F.-X., and O. Talagrand, 1986: Variational algotrithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus, 38A, 97-110.
    • (1986) Tellus , vol.38 A , pp. 97-110
    • Le Dimet, F.-X.1    Talagrand, O.2
  • 79
    • 0000630257 scopus 로고
    • Theoretical skill of Monte Carlo forecast
    • Leith, C. E., 1974: Theoretical skill of Monte Carlo forecast. Mon. Wea. Rev., 102, 409-418.
    • (1974) Mon. Wea. Rev. , vol.102 , pp. 409-418
    • Leith, C.E.1
  • 80
    • 0032730919 scopus 로고    scopus 로고
    • Data assimilation via error subspace statistical estimation. Part I: Theory and schemes
    • Lermusiaux, P. F. J., and A. R. Robinson, 1999: Data assimilation via error subspace statistical estimation. Part I: Theory and schemes. Mon. Wea. Rev., 127, 1385-1407.
    • (1999) Mon. Wea. Rev. , vol.127 , pp. 1385-1407
    • Lermusiaux, P.F.J.1    Robinson, A.R.2
  • 81
    • 34247990255 scopus 로고
    • On the Kolmogorov-Smirnov test for normality with mean and variance unknown
    • Lilliefors, H. W., 1967: On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Amer. Stat. Assoc., 62, 399-402.
    • (1967) J. Amer. Stat. Assoc. , vol.62 , pp. 399-402
    • Lilliefors, H.W.1
  • 82
    • 0031474721 scopus 로고    scopus 로고
    • Physical interpretation of the attractor dimension for the primitive equations of atmospheric circulation
    • Lions, J.-L., O. P. Manley, R. Temam, and S. Wang, 1997: Physical interpretation of the attractor dimension for the primitive equations of atmospheric circulation. J. Atmos. Sci., 54, 1137-1143.
    • (1997) J. Atmos. Sci. , vol.54 , pp. 1137-1143
    • Lions, J.-L.1    Manley, O.P.2    Temam, R.3    Wang, S.4
  • 83
    • 84975888044 scopus 로고
    • Analysis methods for numerical weather prediction
    • Lorenc, A. C., 1986: Analysis methods for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 112, 1177-1194.
    • (1986) Quart. J. Roy. Meteor. Soc. , vol.112 , pp. 1177-1194
    • Lorenc, A.C.1
  • 84
    • 34247212113 scopus 로고    scopus 로고
    • 4D-Var and the butterfly effect: Statistical four-dimensional data assimilation for a wide range of scales
    • Lorenc, A. C., and T. Payne, 2007: 4D-Var and the butterfly effect: Statistical four-dimensional data assimilation for a wide range of scales. Quart. J. Roy. Meteor. Soc., 133, 607-614.
    • (2007) Quart. J. Roy. Meteor. Soc. , vol.133 , pp. 607-614
    • Lorenc, A.C.1    Payne, T.2
  • 85
    • 0000241853 scopus 로고
    • Deterministic nonperiodic flow
    • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130-141.
    • (1963) J. Atmos. Sci. , vol.20 , pp. 130-141
    • Lorenz, E.N.1
  • 86
    • 0000853495 scopus 로고
    • The predictibility of a flow which possesses many scales of motion
    • Lorenz, E. N., 1969: The predictibility of a flow which possesses many scales of motion. Tellus, 21, 289-307.
    • (1969) Tellus , vol.21 , pp. 289-307
    • Lorenz, E.N.1
  • 87
    • 0032004313 scopus 로고    scopus 로고
    • Optimal sites for supplementary weather observations: Simulation with a small model
    • Lorenz, E. N., and K. E. Emmanuel, 1998: Optimal sites for supplementary weather observations: Simulation with a small model. J. Atmos. Sci., 55, 399-414.
    • (1998) J. Atmos. Sci. , vol.55 , pp. 399-414
    • Lorenz, E.N.1    Emmanuel, K.E.2
  • 89
    • 34248364831 scopus 로고    scopus 로고
    • Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part II: Imperfect model experiments
    • Meng, Z., and F. Zhang, 2007: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part II: Imperfect model experiments. Mon. Wea. Rev., 135, 1403-1423.
    • (2007) Mon. Wea. Rev. , vol.135 , pp. 1403-1423
    • Meng, Z.1    Zhang, F.2
  • 90
    • 0028554556 scopus 로고
    • Advanced data assimilation in strongly nonlinear dynamical systems
    • Miller, R. N., M. Ghil, and F. Gauthiez, 1994: Advanced data assimilation in strongly nonlinear dynamical systems. J. Atmos. Sci., 51, 1037-1056.
    • (1994) J. Atmos. Sci. , vol.51 , pp. 1037-1056
    • Miller, R.N.1    Ghil, M.2    Gauthiez, F.3
  • 91
    • 0032764305 scopus 로고    scopus 로고
    • Data assimilation into nonlinear stochastic models
    • Miller, R. N., E. F. Carter, and S. T. Blue, 1999: Data assimilation into nonlinear stochastic models. Tellus, 51A, 167-194.
    • (1999) Tellus , vol.51 A , pp. 167-194
    • Miller, R.N.1    Carter, E.F.2    Blue, S.T.3
  • 92
    • 70350341250 scopus 로고    scopus 로고
    • Ensemble Kalman filter configurations and their performance with the logistic map
    • Mitchell, H. L., and P. L. Houtekamer, 2009: Ensemble Kalman filter configurations and their performance with the logistic map. Mon. Wea. Rev., 137, 4325-4343.
    • (2009) Mon. Wea. Rev. , vol.137 , pp. 4325-4343
    • Mitchell, H.L.1    Houtekamer, P.L.2
  • 93
    • 34547192187 scopus 로고    scopus 로고
    • Merging particle filter for sequential data assimilation
    • Nakano, S., G. Ueno, and T. Higuchi, 2007: Merging particle filter for sequential data assimilation. Nonlinear Processes Geophys., 14, 395-408.
    • (2007) Nonlinear Processes Geophys , vol.14 , pp. 395-408
    • Nakano, S.1    Ueno, G.2    Higuchi, T.3
  • 94
    • 33745313011 scopus 로고    scopus 로고
    • A comparison of error subspace Kalman filters
    • Nerger, L., W. Hiller, and J. Schröter, 2005: A comparison of error subspace Kalman filters. Tellus, 57A, 715-735.
    • (2005) Tellus , vol.57 A , pp. 715-735
    • Nerger, L.1    Hiller, W.2    Schröter, J.3
  • 95
    • 0032401764 scopus 로고    scopus 로고
    • The field campaigns of the European Tracer Experiment (ETEX): Overview and results
    • Nodop, K., R. Connolly, and F. Girardi, 1998: The field campaigns of the European Tracer Experiment (ETEX): Overview and results. Atmos. Environ., 32, 4095-4108.
    • (1998) Atmos. Environ. , vol.32 , pp. 4095-4108
    • Nodop, K.1    Connolly, R.2    Girardi, F.3
  • 98
    • 0035335074 scopus 로고    scopus 로고
    • Stochastic methods for sequential data assimilation in strongly nonlinear systems
    • Pham, D. T., 2001: Stochastic methods for sequential data assimilation in strongly nonlinear systems. Mon. Wea. Rev., 129, 1194-1207.
    • (2001) Mon. Wea. Rev. , vol.129 , pp. 1194-1207
    • Pham, D.T.1
  • 99
    • 0031742114 scopus 로고    scopus 로고
    • A singular evolutive extended Kalman filter for data assimilation in oceanography
    • Pham, D. T., J. Verron, and M. Roubaud, 1998: A singular evolutive extended Kalman filter for data assimilation in oceanography. J. Mar. Syst., 16, 323-340.
    • (1998) J. Mar. Syst. , vol.16 , pp. 323-340
    • Pham, D.T.1    Verron, J.2    Roubaud, M.3
  • 100
    • 33847363253 scopus 로고    scopus 로고
    • Non-Gaussianity and asymmetry of the winter monthly precipitation estimation from NAO
    • Pires, C. A., and R. Perdigão, 2007: Non-Gaussianity and asymmetry of the winter monthly precipitation estimation from NAO. Mon. Wea. Rev., 135, 430-448.
    • (2007) Mon. Wea. Rev. , vol.135 , pp. 430-448
    • Pires, C.A.1    Perdigão, R.2
  • 101
    • 0029656548 scopus 로고    scopus 로고
    • On extending the limits of variational assimilation in nonlinear chaotic systems
    • Pires, C. A., R. Vautard, and O. Talagrand, 1996: On extending the limits of variational assimilation in nonlinear chaotic systems. Tellus, 48A, 96-121.
    • (1996) Tellus , vol.48 A , pp. 96-121
    • Pires, C.A.1    Vautard, R.2    Talagrand, O.3
  • 102
    • 77955419239 scopus 로고    scopus 로고
    • Diagnosis and impacts of non-Gaussianity of innovations in data assimilation
    • Pires, C. A., O. Talagrand, and M. Bocquet, 2010: Diagnosis and impacts of non-Gaussianity of innovations in data assimilation. Physica D, 239, 1701-1717.
    • (2010) Physica D , vol.239 , pp. 1701-1717
    • Pires, C.A.1    Talagrand, O.2    Bocquet, M.3
  • 103
    • 0342804504 scopus 로고    scopus 로고
    • The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics
    • Rabier, F., H. Järvinen, E. Klinker, J.-F. Mahfouf, and A. Simmons, 2000: The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Quart. J. Roy. Meteor. Soc., 126, 1143-1170.
    • (2000) Quart. J. Roy. Meteor. Soc. , vol.126 , pp. 1143-1170
    • Rabier, F.1    Järvinen, H.2    Klinker, E.3    Mahfouf, J.-F.4    Simmons, A.5
  • 104
    • 0003479662 scopus 로고    scopus 로고
    • Series on Atmospheric, Oceanic and Planetary Physics, World Scientific
    • Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding. Series on Atmospheric, Oceanic and Planetary Physics, Vol. 2, World Scientific, 238 pp.
    • (2000) Inverse Methods for Atmospheric Sounding , vol.2 , pp. 238
    • Rodgers, C.D.1
  • 105
    • 39049173291 scopus 로고    scopus 로고
    • Implications of the form of the ensemble transformation in the ensemble square root filters
    • Sakov, P., and P. R. Oke, 2008: Implications of the form of the ensemble transformation in the ensemble square root filters. Mon. Wea. Rev., 136, 1042-1053.
    • (2008) Mon. Wea. Rev. , vol.136 , pp. 1042-1053
    • Sakov, P.1    Oke, P.R.2
  • 106
    • 0000898845 scopus 로고
    • An analysis of variance test for normality (complete samples)
    • Shapiro, S. S., and M. B. Wilk, 1965: An analysis of variance test for normality (complete samples). Biometrika, 52, 591-611.
    • (1965) Biometrika , vol.52 , pp. 591-611
    • Shapiro, S.S.1    Wilk, M.B.2
  • 108
    • 72649090611 scopus 로고    scopus 로고
    • Application of the Gaussian anamorphosis to assimilation in a 3-D coupled physical-ecosystem model of the North Atlantic with the EnKF: A twin experiment
    • Simon, E., and L. Bertino, 2009: Application of the Gaussian anamorphosis to assimilation in a 3-D coupled physical-ecosystem model of the North Atlantic with the EnKF: A twin experiment. Ocean Sci., 5, 495-510.
    • (2009) Ocean Sci. , vol.5 , pp. 495-510
    • Simon, E.1    Bertino, L.2
  • 109
  • 110
    • 44649179254 scopus 로고    scopus 로고
    • Modified particle filter methods for assimilating Lagrangian data into a point-vortex model
    • Spiller, E. T., A. Budhiraja, K. Ide, and C. K. R. T. Jones, 2008: Modified particle filter methods for assimilating Lagrangian data into a point-vortex model. Physica D, 237, 1498-1506.
    • (2008) Physica D , vol.237 , pp. 1498-1506
    • Spiller, E.T.1    Budhiraja, A.2    Ide, K.3    Jones, C.K.R.T.4
  • 111
    • 0023128058 scopus 로고
    • Variational assimilation of meteorological observation with the adjoint vorticity equation. I: Theory
    • Talagrand, O., and P. Courtier, 1987: Variational assimilation of meteorological observation with the adjoint vorticity equation. I: Theory. Quart. J. Roy. Meteor. Soc., 113, 1311-1328.
    • (1987) Quart. J. Roy. Meteor. Soc. , vol.113 , pp. 1311-1328
    • Talagrand, O.1    Courtier, P.2
  • 113
    • 4844230865 scopus 로고    scopus 로고
    • Diagnostics of linear and incremental approximations in 4D-Var
    • Trémolet, Y., 2004: Diagnostics of linear and incremental approximations in 4D-Var. Quart. J. Roy. Meteor. Soc., 130, 2233-2251.
    • (2004) Quart. J. Roy. Meteor. Soc. , vol.130 , pp. 2233-2251
    • Trémolet, Y.1
  • 114
    • 33846869913 scopus 로고    scopus 로고
    • Accounting for an imperfect model in 4D-Var
    • Trémolet, Y., 2006: Accounting for an imperfect model in 4D-Var. Quart. J. Roy. Meteor. Soc., 132, 2483-2504.
    • (2006) Quart. J. Roy. Meteor. Soc. , vol.132 , pp. 2483-2504
    • Trémolet, Y.1
  • 115
    • 1842685707 scopus 로고    scopus 로고
    • Scale interactions and atmospheric predictability: An updated perspective
    • Tribbia, J. J., and D. P. Baumhefner, 2004: Scale interactions and atmospheric predictability: An updated perspective. Mon. Wea. Rev., 132, 703-713.
    • (2004) Mon. Wea. Rev. , vol.132 , pp. 703-713
    • Tribbia, J.J.1    Baumhefner, D.P.2
  • 116
    • 34547563795 scopus 로고    scopus 로고
    • Adaptive observations in ensemble assimilation
    • Uzunoglu, B., 2007: Adaptive observations in ensemble assimilation. Comput. Methods Appl. Mech. Eng., 196, 4207-4221.
    • (2007) Comput. Methods Appl. Mech. Eng. , vol.196 , pp. 4207-4221
    • Uzunoglu, B.1
  • 118
    • 74949130817 scopus 로고    scopus 로고
    • Particle filtering in geophysical systems
    • van Leeuwen, P. J., 2009: Particle filtering in geophysical systems. Mon. Wea. Rev., 137, 4089-4114.
    • (2009) Mon. Wea. Rev. , vol.137 , pp. 4089-4114
    • Van Leeuwen, P.J.1
  • 119
    • 0035359956 scopus 로고    scopus 로고
    • Nonlinearity in data assimilation applications: A practical method for analysis
    • Verlaan, M., and A. W. Heemink, 2001: Nonlinearity in data assimilation applications: A practical method for analysis. Mon. Wea. Rev., 129, 1578-1589.
    • (2001) Mon. Wea. Rev. , vol.129 , pp. 1578-1589
    • Verlaan, M.1    Heemink, A.W.2
  • 121
    • 0036646009 scopus 로고    scopus 로고
    • Ensemble data assimilation without perturbed observations
    • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 1913-1924.
    • (2002) Mon. Wea. Rev. , vol.130 , pp. 1913-1924
    • Whitaker, J.S.1    Hamill, T.M.2
  • 122
    • 58149252059 scopus 로고    scopus 로고
    • A comparison study of data assimilation algorithms for ozone forecasts
    • doi:10.1029/2008JD009991
    • Wu, L., V. Mallet, M. Bocquet, and B. Sportisse, 2008: A comparison study of data assimilation algorithms for ozone forecasts. J. Geophys. Res., 113, D20310, doi:10.1029/2008JD009991.
    • (2008) J. Geophys. Res. , vol.113
    • Wu, L.1    Mallet, V.2    Bocquet, M.3    Sportisse, B.4
  • 123
    • 33746082838 scopus 로고    scopus 로고
    • A note on the particle filter with posterior Gaussian resampling
    • Xiong, X., I. M. Navon, and B. Uzunoglu, 2006: A note on the particle filter with posterior Gaussian resampling. Tellus, 58A, 456-460.
    • (2006) Tellus , vol.58 A , pp. 456-460
    • Xiong, X.1    Navon, I.M.2    Uzunoglu, B.3
  • 124
    • 0001702452 scopus 로고
    • On the optimal filtering of diffusion processes
    • Zakai, M., 1969: On the optimal filtering of diffusion processes. Z. Wahrsch., 11, 230-243.
    • (1969) Z. Wahrsch. , vol.11 , pp. 230-243
    • Zakai, M.1
  • 125
    • 24944523803 scopus 로고    scopus 로고
    • Maximum likelihood ensemble filter: Theoretical aspects
    • Zupanski, M., 2005: Maximum likelihood ensemble filter: Theoretical aspects. Mon. Wea. Rev., 133, 1710-1726.
    • (2005) Mon. Wea. Rev. , vol.133 , pp. 1710-1726
    • Zupanski, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.