메뉴 건너뛰기




Volumn 20, Issue 1, 2016, Pages 343-357

Evaluation of machine learning classifiers for mobile malware detection

Author keywords

Android malware detection; Anomaly based; Intrusion detection system; Machine learning; Mobile device

Indexed keywords

ARTIFICIAL INTELLIGENCE; BAYESIAN NETWORKS; CLASSIFICATION (OF INFORMATION); COMPUTER CRIME; DECISION TREES; INTRUSION DETECTION; LEARNING SYSTEMS; MALWARE; MOBILE DEVICES; PERSONAL COMPUTING;

EID: 84952979147     PISSN: 14327643     EISSN: 14337479     Source Type: Journal    
DOI: 10.1007/s00500-014-1511-6     Document Type: Article
Times cited : (348)

References (66)
  • 2
    • 84952985677 scopus 로고    scopus 로고
    • Android (2013) Android 4.2, Jelly Bean. Accessed June 2013
    • Android (2013) Android 4.2, Jelly Bean. http://www.android.com/about/jelly-bean/. Accessed June 2013
  • 3
    • 70449353683 scopus 로고    scopus 로고
    • Identifying false alarm for network intrusion detection system using hybrid data mining and decision tree
    • Anuar NB, Sallehudin H, Gani A, Zakaria O (2008) Identifying false alarm for network intrusion detection system using hybrid data mining and decision tree. Malays J Comput Sci 21(2):101–115
    • (2008) Malays J Comput Sci , vol.21 , Issue.2 , pp. 101-115
    • Anuar, N.B.1    Sallehudin, H.2    Gani, A.3    Zakaria, O.4
  • 4
    • 84952975133 scopus 로고    scopus 로고
    • Anubis (2013) Anubis: analyzing unknown binaries. Accessed Feb 2013
    • Anubis (2013) Anubis: analyzing unknown binaries. http://anubis.iseclab.org/. Accessed Feb 2013
  • 6
    • 84952985719 scopus 로고    scopus 로고
    • Arstechnica (2013) More BadNews for android: new malicious apps found in google play. Accessed 1st Jan 2013
    • Arstechnica (2013) More BadNews for android: new malicious apps found in google play. http://arstechnica.com/security/2013/04/more-badnews-for-android-new-malicious-apps-found-in-google-play/. Accessed 1st Jan 2013
  • 7
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Bradley AP (1997) The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit 30(7):1145–1159
    • (1997) Pattern Recognit , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 8
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L (2001) Random forests. Mach Learn 45(1):5–32
    • (2001) Mach Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 9
    • 80755143401 scopus 로고    scopus 로고
    • Crowdroid: behavior-based malware detection system for android. In: Proceedings of the 1st ACM workshop on security and privacy in smartphones and mobile devices, Chicago
    • Burguera I, Zurutuza U, Nadjm-Tehrani S (2011) Crowdroid: behavior-based malware detection system for android. In: Proceedings of the 1st ACM workshop on security and privacy in smartphones and mobile devices, Chicago, pp 15–26
    • (2011) pp 15–26
    • Burguera, I.1    Zurutuza, U.2    Nadjm-Tehrani, S.3
  • 11
    • 84859212083 scopus 로고    scopus 로고
    • Ensemble based sensing anomaly detection in wireless sensor networks
    • Curiac D-I, Volosencu C (2012) Ensemble based sensing anomaly detection in wireless sensor networks. Exp Syst Appl 39(10):9087–9096
    • (2012) Exp Syst Appl , vol.39 , Issue.10 , pp. 9087-9096
    • Curiac, D.-I.1    Volosencu, C.2
  • 13
    • 84858392040 scopus 로고    scopus 로고
    • A survey on automated dynamic malware-analysis techniques and tools
    • Egele M, Scholte T, Kirda E, Kruegel C (2008) A survey on automated dynamic malware-analysis techniques and tools. ACM Comput Surv 44(2):1–42
    • (2008) ACM Comput Surv , vol.44 , Issue.2 , pp. 1-42
    • Egele, M.1    Scholte, T.2    Kirda, E.3    Kruegel, C.4
  • 14
    • 84859034694 scopus 로고    scopus 로고
    • A graph mining approach for detecting unknown malwares
    • Eskandari M, Hashemi S (2012) A graph mining approach for detecting unknown malwares. J Vis Lang Comput 23(3):154–162
    • (2012) J Vis Lang Comput , vol.23 , Issue.3 , pp. 154-162
    • Eskandari, M.1    Hashemi, S.2
  • 15
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27(8):861–874
    • (2006) Pattern Recognit Lett , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 17
    • 0031276011 scopus 로고    scopus 로고
    • Bayesian network classifiers
    • Friedman N, Geiger D, Goldszmidt M (1997) Bayesian network classifiers. Mach Learn 29(2–3):131–163
    • (1997) Mach Learn , vol.29 , Issue.2-3 , pp. 131-163
    • Friedman, N.1    Geiger, D.2    Goldszmidt, M.3
  • 18
    • 84952986002 scopus 로고    scopus 로고
    • Android accounted for 79% of all mobile malware in 2012
    • F-Secure (2013) Android accounted for 79% of all mobile malware in 2012, 96% in Q4 alone. http://techcrunch.com/2013/03/07/f-secure-android-accounted-for-79-of-all-mobile-malware-in-2012-96-in-q4-alone/. Accessed 1st June 2013
    • (2013) 96% in Q4 alone
  • 20
    • 84897433175 scopus 로고    scopus 로고
    • MLH-IDS: a multi-level hybrid intrusion detection method. Comput J 2013 doi:10.1093/comjnl/bxt044
    • Gogoi P, Bhattacharyya DK, Borah B, Kalita JK (2013) MLH-IDS: a multi-level hybrid intrusion detection method. Comput J 2013 doi:10.1093/comjnl/bxt044. Online. http://comjnl.oxfordjournals.org/content/early/2013/05/12/comjnl.bxt044.abstract. Accessed 12 May 2013
    • (2013) Online
    • Gogoi, P.1    Bhattacharyya, D.K.2    Borah, B.3    Kalita, J.K.4
  • 21
    • 0001969211 scopus 로고    scopus 로고
    • Use of receiver operating characteristic (ROC) analysis to evaluate sequence matching
    • Gribskov M, Robinson NL (1996) Use of receiver operating characteristic (ROC) analysis to evaluate sequence matching. Comput Chem 20(1):25–33
    • (1996) Comput Chem , vol.20 , Issue.1 , pp. 25-33
    • Gribskov, M.1    Robinson, N.L.2
  • 22
    • 84952975723 scopus 로고    scopus 로고
    • Hardwarezone (2013) Trend micro predicts android malware increase by 185%. Accessed 1st Jan 2013
    • Hardwarezone (2013) Trend micro predicts android malware increase by 185%. http://www.hardwarezone.com.ph/tech-news-trend-micro-predicts-android-malware-increase-185. Accessed 1st Jan 2013
  • 24
    • 84899453293 scopus 로고    scopus 로고
    • Mi-Jung C (2013) Analysis of android malware detection performance using machine learning classifiers
    • Jeju, Ethiopia
    • Hyo-Sik H, Mi-Jung C (2013) Analysis of android malware detection performance using machine learning classifiers. In: Proceedings of the international conference on ICT convergence (ICTC), Jeju, Ethiopia, pp 490–495
    • Proceedings of the international conference on ICT convergence (ICTC) , pp. 490-495
    • Hyo-Sik, H.1
  • 25
    • 33845768389 scopus 로고    scopus 로고
    • Learning to detect and classify malicious executables in the wild
    • Kolter JZ, Maloof MA (2006) Learning to detect and classify malicious executables in the wild. J Mach Learn Res 7:2721–2744
    • (2006) J Mach Learn Res , vol.7 , pp. 2721-2744
    • Kolter, J.Z.1    Maloof, M.A.2
  • 26
    • 38349031393 scopus 로고    scopus 로고
    • Machine learning: a review of classification and combining techniques
    • Kotsiantis SB, Zaharakis ID, Pintelas PE (2006) Machine learning: a review of classification and combining techniques. Artif Intell Rev 26(3):159–190
    • (2006) Artif Intell Rev , vol.26 , Issue.3 , pp. 159-190
    • Kotsiantis, S.B.1    Zaharakis, I.D.2    Pintelas, P.E.3
  • 27
    • 84055219511 scopus 로고    scopus 로고
    • Unknown malicious code detection based on bayesian
    • Lai Y, Liu Z (2011) Unknown malicious code detection based on bayesian. Procedia Eng 15:3836–3842
    • (2011) Procedia Eng , vol.15 , pp. 3836-3842
    • Lai, Y.1    Liu, Z.2
  • 28
    • 84872434823 scopus 로고    scopus 로고
    • Crucial role of CD4+CD 25+ FOXP3+ T regulatory cell, interferon-γ and interleukin-16 in malignant and tuberculous pleural effusions
    • Lamiaa Ibrahim MS, Rahman Azema Abd El, Zeidan Amany, Ragb Maha (2013) Crucial role of CD4+CD 25+ FOXP3+ T regulatory cell, interferon-γ and interleukin-16 in malignant and tuberculous pleural effusions. Immunol Investig 42(2):122–136
    • (2013) Immunol Investig , vol.42 , Issue.2 , pp. 122-136
    • Lamiaa Ibrahim, M.S.1    Rahman, A.A.E.2    Zeidan, A.3    Ragb, M.4
  • 29
    • 84885774862 scopus 로고    scopus 로고
    • A framework for constructing features and models for intrusion detection systems
    • Lee W, Stolfo SJ (2000) A framework for constructing features and models for intrusion detection systems. ACM Trans Inf Syst Secur 3(4):227–261
    • (2000) ACM Trans Inf Syst Secur , vol.3 , Issue.4 , pp. 227-261
    • Lee, W.1    Stolfo, S.J.2
  • 31
    • 0036321445 scopus 로고    scopus 로고
    • Use of k-nearest neighbor classifier for intrusion detection
    • Liao Y, Vemuri VR (2002) Use of k-nearest neighbor classifier for intrusion detection. Comput Secur 21(5):439–448
    • (2002) Comput Secur , vol.21 , Issue.5 , pp. 439-448
    • Liao, Y.1    Vemuri, V.R.2
  • 32
    • 84952982695 scopus 로고    scopus 로고
    • Security alert: geinimi
    • Lookout (2010) Security alert: geinimi, sophisticated new android trojan found in wild. https://blog.lookout.com/blog/2010/12/29/geinimi_trojan/. Accessed 1st July 2014
    • (2010) sophisticated new android trojan found in wild
  • 33
    • 0018079655 scopus 로고
    • Basic principles of ROC analysis
    • Metz CE (1978) Basic principles of ROC analysis. Semin Nucl Med 8(4):283–298
    • (1978) Semin Nucl Med , vol.8 , Issue.4 , pp. 283-298
    • Metz, C.E.1
  • 35
    • 0026927426 scopus 로고
    • Multilayer perceptron, fuzzy sets, and classification
    • Pal SK, Mitra S (1992) Multilayer perceptron, fuzzy sets, and classification. IEEE Trans Neural Netw 3(5):683–697
    • (1992) IEEE Trans Neural Netw , vol.3 , Issue.5 , pp. 683-697
    • Pal, S.K.1    Mitra, S.2
  • 36
    • 84870667876 scopus 로고    scopus 로고
    • An intrusion detection and prevention system in cloud computing: a systematic review
    • Patel A, Taghavi M, Bakhtiyari K (2013) An intrusion detection and prevention system in cloud computing: a systematic review. J Netw Comput Appl 36(1):25–41
    • (2013) J Netw Comput Appl , vol.36 , Issue.1 , pp. 25-41
    • Patel, A.1    Taghavi, M.2    Bakhtiyari, K.3
  • 37
    • 84952980925 scopus 로고    scopus 로고
    • Play G (2013) Shop android apps. Accessed February 2013
    • Play G (2013) Shop android apps. https://play.google.com/store?hl=en. Accessed February 2013
  • 38
    • 84952986469 scopus 로고    scopus 로고
    • Project MG (2013) Android malware genome project. Accessed Feb 2013
    • Project MG (2013) Android malware genome project. http://www.malgenomeproject.org/. Accessed Feb 2013
  • 40
    • 84952980203 scopus 로고    scopus 로고
    • SandDroid (2013) SandDroid-an APK analysis sandbox. Accessed April 2013
    • SandDroid (2013) SandDroid-an APK analysis sandbox. http://sanddroid.xjtu.edu.cn/. Accessed April 2013
  • 41
    • 80255126809 scopus 로고    scopus 로고
    • Practical real-time intrusion detection using machine learning approaches
    • Sangkatsanee P, Wattanapongsakorn N, Charnsripinyo C (2011) Practical real-time intrusion detection using machine learning approaches. Comput Commun 34(18):2227–2235
    • (2011) Comput Commun , vol.34 , Issue.18 , pp. 2227-2235
    • Sangkatsanee, P.1    Wattanapongsakorn, N.2    Charnsripinyo, C.3
  • 44
    • 84952987562 scopus 로고    scopus 로고
    • Schneider J (1997) Cross validation. Accessed July 2013
    • Schneider J (1997) Cross validation. http://www.cs.cmu.edu/~schneide/tut5/node42.html. Accessed July 2013
  • 45
    • 84952980088 scopus 로고    scopus 로고
    • Security P (2011) Rootkits: almost invisible malware. Accessed July 2013
    • Security P (2011) Rootkits: almost invisible malware. http://www.pandasecurity.com/homeusers/security-info/types-malware/rootkit/. Accessed July 2013
  • 46
    • 84897594353 scopus 로고    scopus 로고
    • Seo S-H, Gupta A, Mohamed Sallam A, Bertino E, Yim K (2013) Detecting mobile malware threats to homeland security through static analysis. J Netw Comput Appl Online. Accessed Oct 2013
    • Seo S-H, Gupta A, Mohamed Sallam A, Bertino E, Yim K (2013) Detecting mobile malware threats to homeland security through static analysis. J Netw Comput Appl doi:10.1016/j.jnca.2013.05.008. Online. http://www.sciencedirect.com/science/article. Accessed Oct 2013
  • 47
    • 84856225193 scopus 로고    scopus 로고
    • Andromaly: a behavioral malware detection framework for android devices
    • Shabtai A, Kanonov U, Elovici Y, Glezer C, Weiss Y (2012) Andromaly: a behavioral malware detection framework for android devices. J Intell Inf Syst 38(1):161–190
    • (2012) J Intell Inf Syst , vol.38 , Issue.1 , pp. 161-190
    • Shabtai, A.1    Kanonov, U.2    Elovici, Y.3    Glezer, C.4    Weiss, Y.5
  • 49
    • 84888388073 scopus 로고    scopus 로고
    • An appraisal and design of a multi-agent system based cooperative wireless intrusion detection computational intelligence technique
    • Shamshirband S, Anuar NB, Kiah MLM, Patel A (2013) An appraisal and design of a multi-agent system based cooperative wireless intrusion detection computational intelligence technique. Eng Appl Artif Intell 26(9):2105–2127
    • (2013) Eng Appl Artif Intell , vol.26 , Issue.9 , pp. 2105-2127
    • Shamshirband, S.1    Anuar, N.B.2    Kiah, M.L.M.3    Patel, A.4
  • 51
    • 84900419562 scopus 로고    scopus 로고
    • Cooperative game theoretic approach using fuzzy Q-learning for detecting and preventing intrusions in wireless sensor networks
    • Shamshirband S, Patel A, Anuar NB, Kiah MLM, Abraham A (2014) Cooperative game theoretic approach using fuzzy Q-learning for detecting and preventing intrusions in wireless sensor networks. Eng Appl Artif Intell 32:228–241
    • (2014) Eng Appl Artif Intell , vol.32 , pp. 228-241
    • Shamshirband, S.1    Patel, A.2    Anuar, N.B.3    Kiah, M.L.M.4    Abraham, A.5
  • 52
    • 84952989809 scopus 로고    scopus 로고
    • SlideME (2013) SlideME | android apps market: download free & paid android application. Accessed 1st Oct 2013
    • SlideME (2013) SlideME | android apps market: download free & paid android application. http://slideme.org/. Accessed 1st Oct 2013
  • 53
    • 79959321237 scopus 로고    scopus 로고
    • Software security aspects of Java-based mobile phones
    • ACM symposium on applied computing, Taichung, Taiwan
    • Sohr K, Mustafa T, Nowak A (2011) Software security aspects of Java-based mobile phones. In: Proceedings of the 2011 ACM symposium on applied computing, Taichung, Taiwan, pp 1494–1501
    • (2011) Proceedings of the , vol.2011 , pp. 1494-1501
    • Sohr, K.1    Mustafa, T.2    Nowak, A.3
  • 56
    • 84952983538 scopus 로고    scopus 로고
    • Survey G (2013) Our mobile planet: global smartphone user. Accessed June 2013
    • Survey G (2013) Our mobile planet: global smartphone user. http://services.google.com/fh/files/blogs/final_global_smartphone_user_study_2012.pdf. Accessed June 2013
  • 57
    • 84952975104 scopus 로고    scopus 로고
    • Symantec (2013) Android ransomware predictions hold true. Accessed 1st Sept 2013
    • Symantec (2013) Android ransomware predictions hold true. http://www.symantec.com/connect/blogs/android-ransomware-predictions-hold-true. Accessed 1st Sept 2013
  • 58
    • 84956625176 scopus 로고    scopus 로고
    • Malware detection by applying knowledge discovery processes to application metadata on the Android Market (Google Play). In: Security and communication networks
    • Teufl P, Ferk M, Fitzek A, Hein D, Kraxberger S, Orthacker C (2013) Malware detection by applying knowledge discovery processes to application metadata on the Android Market (Google Play). In: Security and communication networks. doi:10.1002/sec.675 [Online]. http://dx.doi.org/10.1002/sec.675. Accessed 1st April 2014
    • (2013) doi:10.1002/sec.675 [Online]
    • Teufl, P.1    Ferk, M.2    Fitzek, A.3    Hein, D.4    Kraxberger, S.5    Orthacker, C.6
  • 59
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Tin Kam H (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20(8):832–844
    • (1998) IEEE Trans Pattern Anal Mach Intell , vol.20 , Issue.8 , pp. 832-844
    • Tin Kam, H.1
  • 60
    • 84952986754 scopus 로고    scopus 로고
    • tPacketCapturePro (2013) tPacketCapture-Capture Communication Packets. Accessed April 2013
    • tPacketCapturePro (2013) tPacketCapture-Capture Communication Packets. http://www.taosoftware.co.jp/en/android/packetcapture/. Accessed April 2013
  • 61
    • 84952984023 scopus 로고    scopus 로고
    • tshark (2013) tshark-the wireshark network analyzer. Accessed Feb 2013
    • tshark (2013) tshark-the wireshark network analyzer. http://www.wireshark.org/docs/man-pages/tshark.html. Accessed Feb 2013
  • 62
    • 0037105910 scopus 로고    scopus 로고
    • Intrusion detection techniques and approaches
    • Verwoerd T, Hunt R (2002) Intrusion detection techniques and approaches. Comput Commun 25(15):1356–1365
    • (2002) Comput Commun , vol.25 , Issue.15 , pp. 1356-1365
    • Verwoerd, T.1    Hunt, R.2
  • 63
    • 84878368035 scopus 로고    scopus 로고
    • Dissecting android malware: characterization and evolution
    • IEEE symposium on security and privacy (SP), San Fransico, USA
    • Yajin Z, Xuxian J (2012) Dissecting android malware: characterization and evolution. In: Proceedings of the 2012 IEEE symposium on security and privacy (SP), San Fransico, USA, pp 95–109
    • (2012) Proceedings of the , vol.2012 , pp. 95-109
    • Yajin, Z.1    Xuxian, J.2
  • 65
    • 84860281488 scopus 로고    scopus 로고
    • RobotDroid: a lightweight malware detection framework on smartphones
    • Zhao M, Zhang T, Ge F, Yuan Z (2012) RobotDroid: a lightweight malware detection framework on smartphones. J Netw 7(4):715–722
    • (2012) J Netw , vol.7 , Issue.4 , pp. 715-722
    • Zhao, M.1    Zhang, T.2    Ge, F.3    Yuan, Z.4
  • 66
    • 84952989108 scopus 로고    scopus 로고
    • DroidAnalytics: a signature based analytic system to collect, extract
    • Zheng M, Sun M, Lui J (2013) DroidAnalytics: a signature based analytic system to collect, extract, analyze and associate android malware. http://arxiv.org/abs/1302.7212. Accessed 1st Oct 2013
    • (2013) analyze and associate android malware
    • Zheng, M.1    Sun, M.2    Lui, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.