메뉴 건너뛰기




Volumn , Issue , 2015, Pages 1-424

Bayesian speech and language processing

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BAYESIAN NETWORKS; EDUCATION; HIDDEN MARKOV MODELS; INFERENCE ENGINES; LEARNING SYSTEMS; MARKOV PROCESSES; SIGNAL PROCESSING;

EID: 84952906199     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1017/CBO9781107295360     Document Type: Book
Times cited : (66)

References (311)
  • 1
    • 0000177227 scopus 로고
    • The Vapnik-Chervonenkis dimension: Information versus complexity in learning
    • Abu-Mostafa, Y. S. (1989), “The Vapnik-Chervonenkis dimension: information versus complexity in learning,” Neural Computation 1, 312-317.
    • (1989) Neural Computation , vol.1 , pp. 312-317
    • Abu-Mostafa, Y.S.1
  • 2
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike, H. (1974), “A new look at the statistical model identification,” IEEE Transactions on Automatic Control 19(6), 716-723.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 3
    • 51849177370 scopus 로고
    • Likelihood and the Bayes procedure
    • J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, University Press, Valencia, Spain
    • Akaike, H. (1980), “Likelihood and the Bayes procedure,” in J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, eds, Bayesian Statistics, University Press, Valencia, Spain, pp. 143-166.
    • (1980) Bayesian Statistics , pp. 143-166
    • Akaike, H.1
  • 6
  • 8
    • 0000708831 scopus 로고
    • Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems
    • Antoniak, C. E. (1974), “Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems,” Annals of Statistics 2(6), 1152-1174.
    • (1974) Annals of Statistics , vol.2 , Issue.6 , pp. 1152-1174
    • Antoniak, C.E.1
  • 9
    • 70349219399 scopus 로고    scopus 로고
    • Inferring parameters and structure of latent variable models by variational Bayes, Proceedings of the Conference on
    • Attias, H. (1999), “Inferring parameters and structure of latent variable models by variational Bayes,” Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI), pp. 21-30.
    • (1999) Uncertainty in Artificial Intelligence (UAI) , pp. 21-30
    • Attias, H.1
  • 10
    • 85009289957 scopus 로고    scopus 로고
    • Modeling with a subspace constraint on inverse covariance matrices, Proceedings of International Conference on
    • Axelrod, S., Gopinath, R., and Olsen, P. (2002), “Modeling with a subspace constraint on inverse covariance matrices,” Proceedings of International Conference on Spoken Language Processing (ICSLP), pp. 2177-2180.
    • (2002) Spoken Language Processing (ICSLP) , pp. 2177-2180
    • Axelrod, S.1    Gopinath, R.2    Olsen, P.3
  • 11
    • 0022890536 scopus 로고
    • Maximum mutual information estimation of hidden Markov model parameters for speech recognition, Proceedings of International Conference on
    • Bahl, L. R., Brown, P. F., de Souza, P. V., and Mercer, R. L. (1986), “Maximum mutual information estimation of hidden Markov model parameters for speech recognition,” Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 49-52.
    • (1986) Acoustics, Speech, and Signal Processing (ICASSP) , pp. 49-52
    • Bahl, L.R.1    Brown, P.F.2    De Souza, P.V.3    Mercer, R.L.4
  • 14
    • 0000353178 scopus 로고
    • A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
    • Baum, L. E., Petrie, T., Soules, G., and Weiss, N. (1970), “A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains,” The Annals of Mathematical Statistics, pp. 164-171.
    • (1970) The Annals of Mathematical Statistics , pp. 164-171
    • Baum, L.E.1    Petrie, T.2    Soules, G.3    Weiss, N.4
  • 17
    • 0346008165 scopus 로고    scopus 로고
    • Statistical language model adaptation: Review and perspectives
    • Bellegarda, J. (2004), “Statistical language model adaptation: review and perspectives,” Speech Communication 42(1), 93-108.
    • (2004) Speech Communication , vol.42 , Issue.1 , pp. 93-108
    • Bellegarda, J.1
  • 18
    • 0000274403 scopus 로고    scopus 로고
    • Exploiting latent semantic information in statistical language modeling
    • Bellegarda, J. R. (2000), “Exploiting latent semantic information in statistical language modeling,” Proceedings of the IEEE 88(8), 1279-1296.
    • (2000) Proceedings of the IEEE , vol.88 , Issue.8 , pp. 1279-1296
    • Bellegarda, J.R.1
  • 19
    • 0036298547 scopus 로고    scopus 로고
    • Fast update of latent semantic spaces using a linear transform framework, Proceedings of International Conference on
    • Bellegarda, J. R. (2002), “Fast update of latent semantic spaces using a linear transform framework,” Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 769-772.
    • (2002) Acoustics, Speech, and Signal Processing (ICASSP) , pp. 769-772
    • Bellegarda, J.R.1
  • 23
    • 0029546874 scopus 로고
    • Using linear algebra for intelligent information retrieval
    • Berry, M. W., Dumais, S. T., and O’Brien, G. W. (1995), “Using linear algebra for intelligent information retrieval,” SIAM Review 37(4), 573-595.
    • (1995) SIAM Review , vol.37 , Issue.4 , pp. 573-595
    • Berry, M.W.1    Dumais, S.T.2    O’Brien, G.W.3
  • 25
    • 0036293559 scopus 로고    scopus 로고
    • The graphical models toolkit: An open source software system for speech and time-series processing, Proceedings of International Conference on
    • Bilmes, J., and Zweig, G. (2002), “The graphical models toolkit: An open source software system for speech and time-series processing,” Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 3916-3919.
    • (2002) Acoustics, Speech, and Signal Processing (ICASSP) , pp. 3916-3919
    • Bilmes, J.1    Zweig, G.2
  • 27
    • 0002617436 scopus 로고
    • Ferguson distribution via Polya urn schemes
    • Blackwell, D., MacQueen, J. B. (1973), “Ferguson distribution via Polya urn schemes,” The Annals of Statistics 1, 353-355.
    • (1973) The Annals of Statistics , vol.1 , pp. 353-355
    • Blackwell, D.1    Macqueen, J.B.2
  • 28
    • 76849117578 scopus 로고    scopus 로고
    • The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies
    • article 7
    • Blei, D., Griffiths, T., and Jordan, M. (2010), “The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies,” Journal of the ACM 57(2), article 7.
    • (2010) Journal of the ACM , vol.57 , Issue.2
    • Blei, D.1    Griffiths, T.2    Jordan, M.3
  • 34
    • 84936823635 scopus 로고
    • A statistical approach to machine translation
    • Brown, P. F., Cocke, J., Pietra, S. A. D., et al. (1990), “A statistical approach to machine translation,” Computational Linguistics 16(2), 79-85.
    • (1990) Computational Linguistics , vol.16 , Issue.2 , pp. 79-85
    • Brown, P.F.1    Cocke, J.2    Pietra, S.3
  • 35
    • 33645887246 scopus 로고    scopus 로고
    • Support vector machines using GMM supervectors for speaker verification
    • Campbell, W. M., Sturim, D. E., and Reynolds, D. A. (2006), “Support vector machines using GMM supervectors for speaker verification,” Signal Processing Letters, IEEE 13(5), 308-311.
    • (2006) Signal Processing Letters, IEEE , vol.13 , Issue.5 , pp. 308-311
    • Campbell, W.M.1    Sturim, D.E.2    Reynolds, D.A.3
  • 36
    • 85009097035 scopus 로고    scopus 로고
    • Fast speaker adaptation using eigenspace-based maximum likelihood linear regression, Proceedings of International Conference on
    • Chen, K.-T., Liau, W.-W., Wang, H.-M., and Lee, L.-S. (2000), “Fast speaker adaptation using eigenspace-based maximum likelihood linear regression,” Proceedings of International Conference on Spoken Language Processing (ICSLP), pp. 742-745.
    • (2000) Spoken Language Processing (ICSLP) , pp. 742-745
    • Chen, K.-T.1    Liau, W.-W.2    Wang, H.-M.3    Lee, L.-S.4
  • 37
    • 84863387613 scopus 로고    scopus 로고
    • Shrinking exponential language models
    • The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Association for Computational Linguistics
    • Chen, S. F. (2009), “Shrinking exponential language models,” in Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Association for Computational Linguistics, pp. 468-476.
    • (2009) Proceedings of Human Language Technologies , pp. 468-476
    • Chen, S.F.1
  • 38
    • 0033329799 scopus 로고    scopus 로고
    • An empirical study of smoothing techniques for language modeling
    • Chen, S. F., and Goodman, J. (1999), “An empirical study of smoothing techniques for language modeling,” Computer Speech and Language 13(4), 359-393.
    • (1999) Computer Speech and Language , vol.13 , Issue.4 , pp. 359-393
    • Chen, S.F.1    Goodman, J.2
  • 40
    • 85135272864 scopus 로고    scopus 로고
    • Maximum a posteriori linear regression for hidden Markov model adaptation, Proceedings of European Conference on
    • Chesta, C., Siohan, O., and Lee, C.-H. (1999), “Maximum a posteriori linear regression for hidden Markov model adaptation,” Proceedings of European Conference on Speech Communication and Technology (EUROSPEECH), pp. 211-214.
    • (1999) Speech Communication and Technology (EUROSPEECH) , pp. 211-214
    • Chesta, C.1    Siohan, O.2    Lee, C.-H.3
  • 41
    • 0001365754 scopus 로고    scopus 로고
    • Online hierarchical transformation of hidden Markov models for speech recognition
    • Chien, J.-T. (1999), “Online hierarchical transformation of hidden Markov models for speech recognition,” IEEE Transactions on Speech and Audio Processing 7(6), 656-667.
    • (1999) IEEE Transactions on Speech and Audio Processing , vol.7 , Issue.6 , pp. 656-667
    • Chien, J.-T.1
  • 42
    • 0036649879 scopus 로고    scopus 로고
    • Quasi-Bayes linear regression for sequential learning of hidden Markov models
    • Chien, J.-T. (2002), “Quasi-Bayes linear regression for sequential learning of hidden Markov models,” IEEE Transactions on Speech and Audio Processing 10(5), 268-278.
    • (2002) IEEE Transactions on Speech and Audio Processing , vol.10 , Issue.5 , pp. 268-278
    • Chien, J.-T.1
  • 43
    • 0037224311 scopus 로고    scopus 로고
    • Linear regression based Bayesian predictive classification for speech recognition
    • Chien, J.-T. (2003), “Linear regression based Bayesian predictive classification for speech recognition,” IEEE Transactions on Speech and Audio Processing 11(1), 70-79.
    • (2003) IEEE Transactions on Speech and Audio Processing , vol.11 , Issue.1 , pp. 70-79
    • Chien, J.-T.1
  • 46
    • 0030643678 scopus 로고    scopus 로고
    • Improved Bayesian learning of hidden Markov models for speaker adaptation, Proceedings of International Conference on
    • Chien, J.-T., Lee, C.-H., and Wang, H.-C. (1997), “Improved Bayesian learning of hidden Markov models for speaker adaptation,” Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 1027-1030.
    • (1997) Acoustics, Speech, and Signal Processing (ICASSP) , pp. 1027-1030
    • Chien, J.-T.1    Lee, C.-H.2    Wang, H.-C.3
  • 47
    • 0035340701 scopus 로고    scopus 로고
    • Transformation-based Bayesian predictive classification using online prior evolution
    • Chien, J. T., and Liao, G.-H. (2001), “Transformation-based Bayesian predictive classification using online prior evolution,” IEEE Transactions on Speech and Audio Processing 9(4), 399-410.
    • (2001) IEEE Transactions on Speech and Audio Processing , vol.9 , Issue.4 , pp. 399-410
    • Chien, J.T.1    Liao, G.-H.2
  • 49
    • 0032658258 scopus 로고    scopus 로고
    • Decision tree state tying based on penalized Bayesian information criterion, Proceedings of International Conference on
    • Chou, W., and Reichl, W., (1999), “Decision tree state tying based on penalized Bayesian information criterion,” Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 345-348.
    • (1999) Acoustics, Speech, and Signal Processing (ICASSP) , pp. 345-348
    • Chou, W.1    Reichl, W.2
  • 50
    • 0347960629 scopus 로고    scopus 로고
    • Towards better integration of semantic predictors in statistical language modeling, Proceedings of International Conference on
    • Coccaro, N., and Jurafsky, D. (1998), “Towards better integration of semantic predictors in statistical language modeling,” Proceedings of International Conference on Spoken Language Processing (ICSLP), pp. 2403-2406.
    • (1998) Spoken Language Processing (ICSLP) , pp. 2403-2406
    • Coccaro, N.1    Jurafsky, D.2
  • 51
    • 78649271854 scopus 로고    scopus 로고
    • Online unsupervised classification with model comparison in the variational Bayes framework for voice activity detection
    • Cournapeau, D., Watanabe, S., Nakamura, A., and Kawahara, T. (2010), “Online unsupervised classification with model comparison in the variational Bayes framework for voice activity detection,” IEEE Journal of Selected Topics in Signal Processing 4(6), 1071-1083.
    • (2010) IEEE Journal of Selected Topics in Signal Processing , vol.4 , Issue.6 , pp. 1071-1083
    • Cournapeau, D.1    Watanabe, S.2    Nakamura, A.3    Kawahara, T.4
  • 52
    • 84055222005 scopus 로고    scopus 로고
    • Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
    • Dahl, G. E., Yu, D., Deng, L., and Acero, A. (2012), “Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition,” IEEE Transactions on Audio, Speech and Language Processing 20(1), 30-42.
    • (2012) IEEE Transactions on Audio, Speech and Language Processing , vol.20 , Issue.1 , pp. 30-42
    • Dahl, G.E.1    Yu, D.2    Deng, L.3    Acero, A.4
  • 53
    • 0019053271 scopus 로고
    • Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences
    • Davis, S. B., and Mermelstein, P. (1980), “Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences,” IEEE Transactions on Acoustics, Speech, and Signal Processing 28(4), 357-366.
    • (1980) IEEE Transactions on Acoustics, Speech, and Signal Processing , vol.28 , Issue.4 , pp. 357-366
    • Davis, S.B.1    Mermelstein, P.2
  • 54
    • 0000043041 scopus 로고
    • Some matrix-variate distribution theory: Notational considerations and a Bayesian application
    • Dawid, A. P. (1981), “Some matrix-variate distribution theory: notational considerations and a Bayesian application,” Biometrika 68(1), 265-274.
    • (1981) Biometrika , vol.68 , Issue.1 , pp. 265-274
    • Dawid, A.P.1
  • 57
    • 70350450398 scopus 로고    scopus 로고
    • Static and dynamic variance compensation for recognition of reverberant speech with dereverberation preprocessing
    • Delcroix, M., Nakatani, T., and Watanabe, S. (2009), “Static and dynamic variance compensation for recognition of reverberant speech with dereverberation preprocessing,” IEEE Transactions on Audio, Speech, and Language Processing 17(2), 324-334.
    • (2009) IEEE Transactions on Audio, Speech, and Language Processing , vol.17 , Issue.2 , pp. 324-334
    • Delcroix, M.1    Nakatani, T.2    Watanabe, S.3
  • 61
    • 78049394635 scopus 로고    scopus 로고
    • Variational nonparametric Bayesian hidden Markov model, Proceedings of International Conference on
    • Ding, N., and Ou, Z. (2010), “Variational nonparametric Bayesian hidden Markov model,” Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 2098-2101.
    • (2010) Acoustics, Speech, and Signal Processing (ICASSP) , pp. 2098-2101
    • Ding, N.1    Ou, Z.2
  • 62
    • 0036291376 scopus 로고    scopus 로고
    • Uncertainty decoding with SPLICE for noise robust speech recognition, Proceedings of International Conference on
    • Droppo, J., Acero, A., and Deng, L. (2002), “Uncertainty decoding with SPLICE for noise robust speech recognition,” Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP)’, Vol. 1, pp. 1-57.
    • (2002) Acoustics, Speech, and Signal Processing (ICASSP) , vol.1 , pp. 1-57
    • Droppo, J.1    Acero, A.2    Deng, L.3
  • 64
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • Ferguson, T. (1973), “A Bayesian analysis of some nonparametric problems,” The Annals of Statistics 1, 209-230.
    • (1973) The Annals of Statistics , vol.1 , pp. 209-230
    • Ferguson, T.1
  • 65
    • 51449106176 scopus 로고    scopus 로고
    • Crandem systems: Conditional random field acoustic models for hidden Markov models, Proceedings of International Conference on
    • Fosler, E., and Morris, J. (2008), “Crandem systems: Conditional random field acoustic models for hidden Markov models,” Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 4049-4052.
    • (2008) Acoustics, Speech, and Signal Processing (ICASSP) , pp. 4049-4052
    • Fosler, E.1    Morris, J.2
  • 66
    • 56449084167 scopus 로고    scopus 로고
    • An HDP-HMM for systems with state persistence, Proceedings of International Conference on
    • Fox, E. B., Sudderth, E. B., Jordan, M. I., and Willsky, A. S. (2008), “An HDP-HMM for systems with state persistence,” Proceedings of International Conference on Machine Learning (ICML), pp. 312-319.
    • (2008) Machine Learning (ICML) , pp. 312-319
    • Fox, E.B.1    Sudderth, E.B.2    Jordan, M.I.3    Willsky, A.S.4
  • 68
  • 69
    • 0022667694 scopus 로고
    • Speaker independent isolated word recognition using dynamic features of speech spectrum
    • Furui, S. (1986), “Speaker independent isolated word recognition using dynamic features of speech spectrum,” IEEE Transactions on Acoustics, Speech and Signal Processing 34, 52-59.
    • (1986) IEEE Transactions on Acoustics, Speech and Signal Processing , vol.34 , pp. 52-59
    • Furui, S.1
  • 70
    • 84859523434 scopus 로고    scopus 로고
    • History and development of speech recognition
    • F. Chen and K. Jokinen, eds., Springer
    • Furui, S. (2010), “History and development of speech recognition,” in Speech Technology, F. Chen and K. Jokinen, eds., Springer, pp. 1-18.
    • (2010) Speech Technology , pp. 1-18
    • Furui, S.1
  • 71
    • 33745207361 scopus 로고    scopus 로고
    • A Japanese national project on spontaneous speech corpus and processing technology
    • Furui, S., Maekawa, K., and Isahara, M., (2000), “A Japanese national project on spontaneous speech corpus and processing technology,” Proceedings of ASR’00, pp. 244-248.
    • (2000) Proceedings of ASR’00 , pp. 244-248
    • Furui, S.1    Maekawa, K.2    Isahara, M.3
  • 72
    • 0032050110 scopus 로고    scopus 로고
    • Maximum likelihood linear transformations for HMM-based speech recognition
    • Gales, M. (1998), “Maximum likelihood linear transformations for HMM-based speech recognition,” Computer Speech and Language 12, 75-98.
    • (1998) Computer Speech and Language , vol.12 , pp. 75-98
    • Gales, M.1
  • 74
    • 0032638856 scopus 로고    scopus 로고
    • Semi-tied covariance matrices for hidden Markov models
    • Gales, M. J. F. (1999), “Semi-tied covariance matrices for hidden Markov models,” IEEE Transactions on Speech and Audio Processing 7(3), 272-281.
    • (1999) IEEE Transactions on Speech and Audio Processing , vol.7 , Issue.3 , pp. 272-281
    • Gales, M.1
  • 78
    • 84885621082 scopus 로고    scopus 로고
    • Relation between PLSA and NMF and implications
    • Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
    • Gaussier, E., and Goutte, C. (2005), “Relation between PLSA and NMF and implications,” Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, ACM, pp. 601-602.
    • (2005) ACM , pp. 601-602
    • Gaussier, E.1    Goutte, C.2
  • 79
    • 0040262052 scopus 로고
    • Bayesian learning of Gaussian mixture densities for hidden Markov models, Proceedings of DARPA
    • Gauvain, J.-L., and Lee, C.-H. (1991), “Bayesian learning of Gaussian mixture densities for hidden Markov models,” Proceedings of DARPA Speech and Natural Language Workshop, pp. 272-277.
    • (1991) Speech and Natural Language Workshop , pp. 272-277
    • Gauvain, J.-L.1    Lee, C.-H.2
  • 80
    • 0028419019 scopus 로고
    • Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains
    • Gauvain, J.-L., and Lee, C.-H. (1994), “Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains,” IEEE Transactions on Speech and Audio Processing 2, 291-298.
    • (1994) IEEE Transactions on Speech and Audio Processing , vol.2 , pp. 291-298
    • Gauvain, J.-L.1    Lee, C.-H.2
  • 82
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • Geman, S., and Geman, D. (1984), “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,” IEEE Transactions on Pattern Analysis and Machine Intelligence 6(1), 721-741.
    • (1984) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.6 , Issue.1 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 83
    • 34548105186 scopus 로고    scopus 로고
    • Large-scale Bayesian logistic regression for text categorization
    • Genkin, A., Lewis, D. D., and Madigan, D. (2007), “Large-scale Bayesian logistic regression for text categorization,” Technometrics 49(3), 291-304.
    • (2007) Technometrics , vol.49 , Issue.3 , pp. 291-304
    • Genkin, A.1    Lewis, D.D.2    Madigan, D.3
  • 87
    • 85121030057 scopus 로고    scopus 로고
    • Topic-based language models using EM, Proceedings of European Conference on
    • Gildea, D., and Hofmann, T. (1999), “Topic-based language models using EM,” Proceedings of European Conference on Speech Communication and Technology (EUROSPEECH), pp. 2167-2170.
    • (1999) Speech Communication and Technology (EUROSPEECH) , pp. 2167-2170
    • Gildea, D.1    Hofmann, T.2
  • 90
    • 0038359548 scopus 로고    scopus 로고
    • A probabilistic framework for segment-based speech recognition
    • Glass, J. (2003), “A probabilistic framework for segment-based speech recognition,” Computer Speech and Language 17(2-3), 137-152.
    • (2003) Computer Speech and Language , vol.17 , Issue.2-3 , pp. 137-152
    • Glass, J.1
  • 91
    • 0001492251 scopus 로고    scopus 로고
    • Minimum Bayes-risk automatic speech recognition
    • Goel, V., and Byrne, W. (2000), “Minimum Bayes-risk automatic speech recognition,” Computer Speech and Language 14, 115-135.
    • (2000) Computer Speech and Language , vol.14 , pp. 115-135
    • Goel, V.1    Byrne, W.2
  • 94
    • 67349278780 scopus 로고    scopus 로고
    • A Bayesian framework for word segmentation: Exploring the effects of context
    • Goldwater, S., Griffiths, T., and Johnson, M. (2009), “A Bayesian framework for word segmentation: Exploring the effects of context,” Cognition 112(1), 21-54.
    • (2009) Cognition , vol.112 , Issue.1 , pp. 21-54
    • Goldwater, S.1    Griffiths, T.2    Johnson, M.3
  • 96
    • 0000803388 scopus 로고
    • The population frequencies of species and the estimation of populations
    • Good, I. J. (1953), “The population frequencies of species and the estimation of populations,” Biometrika 40, 237-264.
    • (1953) Biometrika , vol.40 , pp. 237-264
    • Good, I.J.1
  • 97
    • 34547548235 scopus 로고    scopus 로고
    • Probabilistic and bottle-neck features for LVCSR of meetings, Proceedings of International Conference on
    • Grezl, F., Karafiat, M., Kontar, S., and Cernocky, J. (2007), “Probabilistic and bottle-neck features for LVCSR of meetings,” Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 757-760.
    • (2007) Acoustics, Speech, and Signal Processing (ICASSP) , pp. 757-760
    • Grezl, F.1    Karafiat, M.2    Kontar, S.3    Cernocky, J.4
  • 101
    • 85017287487 scopus 로고
    • Linear discriminant analysis for improved large vocabulary continuous speech recognition, International Conference on
    • Haeb-Umbach, R., and Ney, H. (1992), “Linear discriminant analysis for improved large vocabulary continuous speech recognition,” International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vol. 1, pp. 13-16.
    • (1992) Acoustics, Speech, and Signal Processing (ICASSP) , vol.1 , pp. 13-16
    • Haeb-Umbach, R.1    Ney, H.2
  • 106
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings, W. K. (1970), “Monte Carlo sampling methods using Markov chains and their applications,” Biometrika 57, 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 107
    • 85032751713 scopus 로고    scopus 로고
    • Discriminative training for automatic speech recognition: Modeling, criteria, optimization, implementation, and performance
    • Heigold, G., Ney, H., Schluter, R., and Wiesler, S. (2012), “Discriminative training for automatic speech recognition: Modeling, criteria, optimization, implementation, and performance,” IEEE Signal Processing Magazine 29(6), 58-69.
    • (2012) IEEE Signal Processing Magazine , vol.29 , Issue.6 , pp. 58-69
    • Heigold, G.1    Ney, H.2    Schluter, R.3    Wiesler, S.4
  • 108
    • 0025041264 scopus 로고
    • Perceptual linear predictive (PLP) analysis of speech
    • Hermansky, H. (1990), “Perceptual linear predictive (PLP) analysis of speech,” Journal of the Acoustic Society of America 87(4), 1738-1752.
    • (1990) Journal of the Acoustic Society of America , vol.87 , Issue.4 , pp. 1738-1752
    • Hermansky, H.1
  • 109
    • 0033709098 scopus 로고    scopus 로고
    • Tandem connectionist feature extraction for conventional HMM systems, Proceedings of International Conference on
    • Hermansky, H., Ellis, D., and Sharma, S. (2000), “Tandem connectionist feature extraction for conventional HMM systems,” Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 1635-1638.
    • (2000) Acoustics, Speech, and Signal Processing (ICASSP) , pp. 1635-1638
    • Hermansky, H.1    Ellis, D.2    Sharma, S.3
  • 110
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition
    • Hinton, G., Deng, L., Yu, D., etal. (2012), “Deep neural networks for acoustic modeling in speech recognition,” IEEE Signal Processing Magazine 29(6), 82-97.
    • (2012) IEEE Signal Processing Magazine , vol.29 , Issue.6 , pp. 82-97
    • Hinton, G.1    Deng, L.2    Yu, D.3
  • 111
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G., Osindero, S., and Teh, Y. (2006), “A fast learning algorithm for deep belief nets,” Neural Computation 18, 1527-1554.
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.3
  • 113
    • 85026972772 scopus 로고    scopus 로고
    • Probabilistic latent semantic indexing, Proceedings of the Annual International ACM SIGIR Conference on
    • Hofmann, T. (1999b), “Probabilistic latent semantic indexing,” Proceedings of the Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 50-57.
    • (1999) Research and Development in Information Retrieval , pp. 50-57
    • Hofmann, T.1
  • 114
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised learning by probabilistic latent semantic analysis
    • Hofmann, T. (2001), “Unsupervised learning by probabilistic latent semantic analysis,” Machine Learning 42(1-2), 177-196.
    • (2001) Machine Learning , vol.42 , Issue.1-2 , pp. 177-196
    • Hofmann, T.1
  • 115
    • 84872838032 scopus 로고    scopus 로고
    • Speech recognition algorithms using weighted finite-state transducers, Synthesis Lectures on
    • Hori, T., and Nakamura, A. (2013), “Speech recognition algorithms using weighted finite-state transducers,” Synthesis Lectures on Speech and Audio Processing 9(1), 1-162.
    • (2013) Speech and Audio Processing , vol.9 , Issue.1 , pp. 1-162
    • Hori, T.1    Nakamura, A.2
  • 116
    • 64549109650 scopus 로고    scopus 로고
    • Knowledge-based adaptive decision tree state tying for conversational speech recognition
    • Hu, R., and Zhao, Y. (2007), “Knowledge-based adaptive decision tree state tying for conversational speech recognition,” IEEE Transactions on Audio, Speech, and Language Processing 15(7), 2160-2168.
    • (2007) IEEE Transactions on Audio, Speech, and Language Processing , vol.15 , Issue.7 , pp. 2160-2168
    • Hu, R.1    Zhao, Y.2
  • 120
    • 0031103160 scopus 로고    scopus 로고
    • On-line adaptive learning of the continuous density hidden Markov model based on approximate recursive Bayes estimate
    • Huo, Q., and Lee, C.-H. (1997), “On-line adaptive learning of the continuous density hidden Markov model based on approximate recursive Bayes estimate,” IEEE Transactions on Speech and Audio Processing 5(2), 161-172.
    • (1997) IEEE Transactions on Speech and Audio Processing , vol.5 , Issue.2 , pp. 161-172
    • Huo, Q.1    Lee, C.-H.2
  • 121
    • 0033900150 scopus 로고    scopus 로고
    • A Bayesian predictive classification approach to robust speech recognition
    • Huo, Q., and Lee, C.-H. (2000), “A Bayesian predictive classification approach to robust speech recognition,” IEEE Transactions on Speech and Audio Processing 8, 200-204.
    • (2000) IEEE Transactions on Speech and Audio Processing , vol.8 , pp. 200-204
    • Huo, Q.1    Lee, C.-H.2
  • 123
    • 84890488932 scopus 로고    scopus 로고
    • A summary of the 2012 JHU CLSP workshop on zero resource speech technologies and models of early language acquisition, Proceedings of International Conference on
    • Jansen, A., Dupoux, E., Goldwater, S., et al. (2013), “A summary of the 2012 JHU CLSP workshop on zero resource speech technologies and models of early language acquisition,” Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 8111-8115.
    • (2013) Acoustics, Speech, and Signal Processing (ICASSP) , pp. 8111-8115
    • Jansen, A.1    Dupoux, E.2    Goldwater, S.3
  • 124
    • 0016939124 scopus 로고
    • Continuous speech recognition by statistical methods
    • Jelinek, F. (1976), “Continuous speech recognition by statistical methods,” Proceedings of the IEEE 64(4), 532-556.
    • (1976) Proceedings of the IEEE , vol.64 , Issue.4 , pp. 532-556
    • Jelinek, F.1
  • 126
    • 0019114666 scopus 로고
    • Interpolated estimation of Markov source parameters from sparse data, Proceedings of the Workshop on
    • Jelinek, F., and Mercer, R. L. (1980), “Interpolated estimation of Markov source parameters from sparse data,” Proceedings of the Workshop on Pattern Recognition in Practice, pp. 381-397.
    • (1980) Pattern Recognition in Practice , pp. 381-397
    • Jelinek, F.1    Mercer, R.L.2
  • 129
    • 4544253566 scopus 로고    scopus 로고
    • Automatic generation of non-uniform HMM structures based on variational Bayesian approach, Proceedings of International Conference on
    • Jitsuhiro, T., and Nakamura, S. (2004), “Automatic generation of non-uniform HMM structures based on variational Bayesian approach,” Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 805-808.
    • (2004) Acoustics, Speech, and Signal Processing (ICASSP) , pp. 805-808
    • Jitsuhiro, T.1    Nakamura, S.2
  • 130
    • 78650848811 scopus 로고    scopus 로고
    • Learning to classify text using support vector machines: Methods, theory, and algorithms
    • Joachims, T. (2002), “Learning to classify text using support vector machines: Methods, theory, and algorithms,” Computational Linguistics 29(4), 656-664.
    • (2002) Computational Linguistics , vol.29 , Issue.4 , pp. 656-664
    • Joachims, T.1
  • 131
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • Jordan, M., Ghahramani, Z., Jaakkola, T., and Saul, L. (1999), “An introduction to variational methods for graphical models,” Machine Learning 37(2), 183-233.
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.1    Ghahramani, Z.2    Jaakkola, T.3    Saul, L.4
  • 132
    • 0025493667 scopus 로고
    • The segmental K-means algorithm for estimating parameters of hidden Markov models
    • Juang, B.-H., and Rabiner, L. (1990), “The segmental K-means algorithm for estimating parameters of hidden Markov models,” IEEE Transactions on Acoustics, Speech and Signal Processing 38(9), 1639-1641.
    • (1990) IEEE Transactions on Acoustics, Speech and Signal Processing , vol.38 , Issue.9 , pp. 1639-1641
    • Juang, B.-H.1    Rabiner, L.2
  • 133
    • 0026982122 scopus 로고
    • Discriminative learning for minimum error classification
    • Juang, B., and Katagiri, S. (1992), “Discriminative learning for minimum error classification,” IEEE Transactions on Signal Processing 40(12), 3043-3054.
    • (1992) IEEE Transactions on Signal Processing , vol.40 , Issue.12 , pp. 3043-3054
    • Juang, B.1    Katagiri, S.2
  • 136
    • 1342277260 scopus 로고
    • Technical Report 254, Department of Statistics, University of Washington
    • Kass, R. E., and Raftery, A. E. (1993), Bayes factors and model uncertainty, Technical Report 254, Department of Statistics, University of Washington.
    • (1993) Bayes Factors and Model Uncertainty
    • Kass, R.E.1    Raftery, A.E.2
  • 138
    • 0023312404 scopus 로고
    • Estimation of probabilities from sparse data for the language model component of a speech recognizer
    • Katz, S. (1987), “Estimation of probabilities from sparse data for the language model component of a speech recognizer,” IEEE Transactions on Acoustics, Speech, and Signal Processing 35(3), 400-401.
    • (1987) IEEE Transactions on Acoustics, Speech, and Signal Processing , vol.35 , Issue.3 , pp. 400-401
    • Katz, S.1
  • 139
    • 0029746069 scopus 로고    scopus 로고
    • Back-off method for n-gram smoothing based on binomial posteriori distribution, Proceedings of International Conference on
    • Kawabata, T., and Tamoto, M. (1996), “Back-off method for n-gram smoothing based on binomial posteriori distribution,” Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vol. 1, pp. 192-195.
    • (1996) Acoustics, Speech, and Signal Processing (ICASSP) , vol.1 , pp. 192-195
    • Kawabata, T.1    Tamoto, M.2
  • 143
    • 70350125882 scopus 로고    scopus 로고
    • An overview of text-independent speaker recognition: From features to supervectors
    • Kinnunen, T., and Li, H. (2010), “An overview of text-independent speaker recognition: from features to supervectors,” Speech Communication 52(1), 12-40.
    • (2010) Speech Communication , vol.52 , Issue.1 , pp. 12-40
    • Kinnunen, T.1    Li, H.2
  • 145
    • 0028996876 scopus 로고
    • Improved backing-off for m-gram language modeling, Proceedings of International Conference on
    • Kneser, R., and Ney, H. (1995), “Improved backing-off for m-gram language modeling,” Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 181-184.
    • (1995) Acoustics, Speech, and Signal Processing (ICASSP) , pp. 181-184
    • Kneser, R.1    Ney, H.2
  • 153
    • 0034271876 scopus 로고    scopus 로고
    • The evidence framework applied to support vector machines
    • Kwok, J. T.-Y. (2000), “The evidence framework applied to support vector machines,” IEEE Transactions on Neural Networks 11(5), 1162-1173.
    • (2000) IEEE Transactions on Neural Networks , vol.11 , Issue.5 , pp. 1162-1173
    • Kwok, J.T.1
  • 154
    • 0036294874 scopus 로고    scopus 로고
    • Application of variational Bayesian PCA for speech feature extraction, Proceedings of International Conference on
    • Kwon, O., Lee, T.-W., and Chan, K. (2002), “Application of variational Bayesian PCA for speech feature extraction,” Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vol. 1, pp. 825-828.
    • (2002) Acoustics, Speech, and Signal Processing (ICASSP) , vol.1 , pp. 825-828
    • Kwon, O.1    Lee, T.-W.2    Chan, K.3
  • 155
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data, Proceedings of International Conference on
    • Lafferty, J., McCallum, A., and Pereira, F. (2001), “Conditional random fields: Probabilistic models for segmenting and labeling sequence data,” Proceedings of International Conference on Machine Learning, pp. 282-289.
    • (2001) Machine Learning , pp. 282-289
    • Lafferty, J.1    Mc Callum, A.2    Pereira, F.3
  • 156
    • 0036460908 scopus 로고    scopus 로고
    • Lightly supervised and unsupervised acoustic model training
    • Lamel, L., Gauvain, J.-L., and Adda, G. (2002), “Lightly supervised and unsupervised acoustic model training,” Computer Speech and Language 16(1), 115-129.
    • (2002) Computer Speech and Language , vol.16 , Issue.1 , pp. 115-129
    • Lamel, L.1    Gauvain, J.-L.2    Adda, G.3
  • 158
    • 0000159105 scopus 로고    scopus 로고
    • On adaptive decision rules and decision parameter adaptation for automatic speech recognition
    • Lee, C.-H., and Huo, Q. (2000), “On adaptive decision rules and decision parameter adaptation for automatic speech recognition,” Proceedings of the IEEE 88, 1241-1269.
    • (2000) Proceedings of the IEEE , vol.88 , pp. 1241-1269
    • Lee, C.-H.1    Huo, Q.2
  • 160
    • 85032604684 scopus 로고    scopus 로고
    • Discovering linguistic structures in speech: Models and applications, PhD thesis
    • Lee, C.-Y. (2014), Discovering linguistic structures in speech: models and applications, PhD thesis, Massachusetts Institute of Technology.
    • (2014) Massachusetts Institute of Technology
    • Lee, C.-Y.1
  • 162
    • 84921656632 scopus 로고    scopus 로고
    • Joint learning of phonetic units and word pronunciations for ASR, Proceedings of the 2013 Conference on
    • Lee, C.-Y., Zhang, Y., and Glass, J. (2013), “Joint learning of phonetic units and word pronunciations for ASR,” Proceedings of the 2013 Conference on Empirical Methods on Natural Language Processing (EMNLP), pp. 182-192.
    • (2013) Empirical Methods on Natural Language Processing (EMNLP) , pp. 182-192
    • Lee, C.-Y.1    Zhang, Y.2    Glass, J.3
  • 163
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee, D. D., and Seung, H. S. (1999), “Learning the parts of objects by non-negative matrix factorization,” Nature 401(6755), 788-791.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 164
    • 0029288633 scopus 로고
    • Maximum likelihood linear regression for speaker adaptation of continuous density hidden Markov models
    • Leggetter, C. J., and Woodland, P. C. (1995), “Maximum likelihood linear regression for speaker adaptation of continuous density hidden Markov models,” Computer Speech and Language 9, 171-185.
    • (1995) Computer Speech and Language , vol.9 , pp. 171-185
    • Leggetter, C.J.1    Woodland, P.C.2
  • 165
    • 84957069091 scopus 로고    scopus 로고
    • Naive (Bayes) at forty: The independence assumption in information retrieval
    • Springer-Verlag
    • Lewis, D. D. (1998), “Naive (Bayes) at forty: The independence assumption in information retrieval,” Proceedings of the 10th European Conference on Machine Learning, Springer-Verlag, pp. 4-15.
    • (1998) Proceedings of the 10Th European Conference on Machine Learning , pp. 4-15
    • Lewis, D.D.1
  • 166
    • 79951870792 scopus 로고
    • The collapsed Gibbs sampler in Bayesian computations with applications to a gene regulation problem
    • Liu, J. (1994), “The collapsed Gibbs sampler in Bayesian computations with applications to a gene regulation problem,” Journal of the American Statistical Association 89(427).
    • (1994) Journal of the American Statistical Association , vol.89 , Issue.427
    • Liu, J.1
  • 169
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay, D. J. C. (1992a), “Bayesian interpolation,” Neural Computation 4(3), 415-447.
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 415-447
    • Mackay, D.1
  • 170
    • 0000234257 scopus 로고
    • The evidence framework applied to classification networks
    • MacKay, D. J. C. (1992b), “The evidence framework applied to classification networks,” Neural Computation 4(5), 720-736.
    • (1992) Neural Computation , vol.4 , Issue.5 , pp. 720-736
    • Mackay, D.1
  • 171
    • 0002704818 scopus 로고
    • A practical Bayesian framework for back-propagation networks
    • MacKay, D. J. C. (1992c), “A practical Bayesian framework for back-propagation networks,” Neural Computation 4(3), 448-472.
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 448-472
    • Mackay, D.1
  • 172
    • 0001441372 scopus 로고
    • Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks
    • MacKay, D. J. C. (1995), “Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks,” Network: Computation in Neural Systems 6(3), 469-505.
    • (1995) Network: Computation in Neural Systems , vol.6 , Issue.3 , pp. 469-505
    • Mackay, D.1
  • 173
    • 0003598536 scopus 로고    scopus 로고
    • Ensemble learning for hidden Markov models
    • Cavendish Laboratory, University of Cambridge
    • MacKay, D. J. C. (1997), Ensemble learning for hidden Markov models, Technical Report, Cavendish Laboratory, University of Cambridge.
    • (1997) Technical Report
    • Mackay, D.1
  • 174
    • 84974288913 scopus 로고
    • A hierarchical Dirichlet language model
    • MacKay, D. J. C., and Peto, L. C. B. (1995), “A hierarchical Dirichlet language model,” Natural Language Engineering 1(3), 289-308.
    • (1995) Natural Language Engineering , vol.1 , Issue.3 , pp. 289-308
    • Mackay, D.1    Peto, L.2
  • 175
    • 80051981740 scopus 로고    scopus 로고
    • Unsupervised activity recognition with users physical characteristics data,” Proceedings of International Symposium on
    • Maekawa, T., and Watanabe, S. (2011), “Unsupervised activity recognition with user’s physical characteristics data,” Proceedings of International Symposium on Wearable Computers, pp. 89-96.
    • (2011) Wearable Computers , pp. 89-96
    • Maekawa, T.1    Watanabe, S.2
  • 178
    • 0030715922 scopus 로고    scopus 로고
    • Task adaptation using MAP estimation in n-gram language modeling, Proceedings of International Conference on
    • Masataki, H., Sagisaka, Y., Hisaki, K., and Kawahara, T. (1997), “Task adaptation using MAP estimation in n-gram language modeling,” Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 783-786.
    • (1997) Acoustics, Speech, and Signal Processing (ICASSP) , pp. 783-786
    • Masataki, H.1    Sagisaka, Y.2    Hisaki, K.3    Kawahara, T.4
  • 179
    • 0028460895 scopus 로고
    • Comparison of text-independent speaker recognition methods using VQ-distortion and discrete/continuous HMMs
    • Matsui, T., and Furui, S. (1994), “Comparison of text-independent speaker recognition methods using VQ-distortion and discrete/continuous HMMs,” IEEE Transactions on Speech and Audio Processing 2(3), 456-459.
    • (1994) IEEE Transactions on Speech and Audio Processing , vol.2 , Issue.3 , pp. 456-459
    • Matsui, T.1    Furui, S.2
  • 180
  • 185
    • 0345978970 scopus 로고    scopus 로고
    • Expectation propagation for approximate Bayesian inference, Proceedings of Conference on
    • Minka, T. P. (2001), “Expectation propagation for approximate Bayesian inference,” Proceedings of Conference on Uncertainty in Artificial Intelligence (UAI), pp. 362-369.
    • (2001) Uncertainty in Artificial Intelligence (UAI) , pp. 362-369
    • Minka, T.P.1
  • 186
    • 84859895217 scopus 로고    scopus 로고
    • Bayesian unsupervised word segmentation with nested Pitman-Yor language modeling, Proceedings of Joint Conference of Annual Meeting of the ACL and International Joint Conference on
    • Mochihashi, D., Yamada, T., and Ueda, N. (2009), “Bayesian unsupervised word segmentation with nested Pitman-Yor language modeling,” Proceedings of Joint Conference of Annual Meeting of the ACL and International Joint Conference on Natural Language Processing ofthe AFNLP, pp. 100-108.
    • (2009) Natural Language Processing Ofthe AFNLP , pp. 100-108
    • Mochihashi, D.1    Yamada, T.2    Ueda, N.3
  • 187
    • 0036460907 scopus 로고    scopus 로고
    • Weighted finite-state transducers in speech recognition
    • Mohri, M., Pereira, F., and Riley, M. (2002), “Weighted finite-state transducers in speech recognition,” Computer Speech and Language 16, 69-88.
    • (2002) Computer Speech and Language , vol.16 , pp. 69-88
    • Mohri, M.1    Pereira, F.2    Riley, M.3
  • 188
    • 0141590307 scopus 로고    scopus 로고
    • The ELISA consortium approaches in speaker segmentation during the NIST 2002 speaker recognition evaluation, Proceedings of International Conference on
    • Moraru, D., Meignier, S., Besacier, L., Bonastre, J.-F., and Magrin-Chagnolleau, I. (2003), “The ELISA consortium approaches in speaker segmentation during the NIST 2002 speaker recognition evaluation,” Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vol. 2, pp. 89-92.
    • (2003) Acoustics, Speech, and Signal Processing (ICASSP) , vol.2 , pp. 89-92
    • Moraru, D.1    Meignier, S.2    Besacier, L.3    Bonastre, J.-F.4    Magrin-Chagnolleau, I.5
  • 191
    • 0002425879 scopus 로고    scopus 로고
    • Loopy belief propagation for approximate inference: An empirical study, Proceedings of Conference on
    • Murphy, K. P., Weiss, Y., and Jordan, M. I. (1999), “Loopy belief propagation for approximate inference: An empirical study,” Proceedings of Conference on Uncertainty in Artificial Intelligence (UAI), pp. 467-475.
    • (1999) Uncertainty in Artificial Intelligence (UAI) , pp. 467-475
    • Murphy, K.P.1    Weiss, Y.2    Jordan, M.I.3
  • 193
    • 0043028228 scopus 로고
    • Institute of Electronics, Information and Communication Engineers (IEICE) (in Japanese)
    • Nakagawa, S. (1988), Speech Recognition by Probabilistic Model, Institute of Electronics, Information and Communication Engineers (IEICE) (in Japanese).
    • (1988) Speech Recognition by Probabilistic Model
    • Nakagawa, S.1
  • 194
    • 70349205533 scopus 로고    scopus 로고
    • A unified view for discriminative objective functions based on negative exponential of difference measure between strings, Proceedings of International Conference on
    • Nakamura, A., McDermott, E., Watanabe, S., and Katagiri, S. (2009), “A unified view for discriminative objective functions based on negative exponential of difference measure between strings,” Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 1633-1636.
    • (2009) Acoustics, Speech, and Signal Processing (ICASSP) , pp. 1633-1636
    • Nakamura, A.1    Mc Dermott, E.2    Watanabe, S.3    Katagiri, S.4
  • 195
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse, and other variants
    • Neal, R., and Hinton, G. (1998), “A view of the EM algorithm that justifies incremental, sparse, and other variants,” Learning in Graphical Models, pp. 355-368.
    • (1998) Learning in Graphical Models , pp. 355-368
    • Neal, R.1    Hinton, G.2
  • 197
    • 0004087397 scopus 로고
    • Probabilistic inference using Markov chain Monte Carlo methods
    • Dept. of Computer Science, University of Toronto
    • Neal, R. M. (1993), “Probabilistic inference using Markov chain Monte Carlo methods,” Technical Report CRG-TR-93-1, Dept. of Computer Science, University of Toronto.
    • (1993) Technical Report CRG-TR-93-1
    • Neal, R.M.1
  • 198
    • 77950032550 scopus 로고    scopus 로고
    • Markov chain sampling methods for Dirichlet process mixture models
    • Neal, R. M. (2000), “Markov chain sampling methods for Dirichlet process mixture models,” Journal of Computational and Graphical Statistics 9(2), 249-265.
    • (2000) Journal of Computational and Graphical Statistics , vol.9 , Issue.2 , pp. 249-265
    • Neal, R.M.1
  • 199
    • 1642370803 scopus 로고    scopus 로고
    • Slice sampling
    • Neal, R. M. (2003), “Slice sampling,” Annals of Statistics 31, 705-767.
    • (2003) Annals of Statistics , vol.31 , pp. 705-767
    • Neal, R.M.1
  • 202
    • 0027929445 scopus 로고
    • On structuring probabilistic dependences in stochastic language modeling
    • Ney, H., Essen, U., and Kneser, R. (1994), “On structuring probabilistic dependences in stochastic language modeling,” Computer Speech and Language 8, 1-38.
    • (1994) Computer Speech and Language , vol.8 , pp. 1-38
    • Ney, H.1    Essen, U.2    Kneser, R.3
  • 207
    • 0030715097 scopus 로고    scopus 로고
    • HMM topology design using maximum likelihood successive state splitting
    • Ostendorf, M., and Singer, H. (1997), “HMM topology design using maximum likelihood successive state splitting,” Computer Speech and Language 11, 17-41.
    • (1997) Computer Speech and Language , vol.11 , pp. 17-41
    • Ostendorf, M.1    Singer, H.2
  • 208
    • 0012330750 scopus 로고
    • The design for the Wall Street Journal-based CSR corpus, Proceedings of the Workshop on Speech and Natural Language
    • Paul, D. B., and Baker, J. M. (1992), “The design for the Wall Street Journal-based CSR corpus,” Proceedings of the Workshop on Speech and Natural Language, Association for Computational Linguistics, pp. 357-362.
    • (1992) Association for Computational Linguistics , pp. 357-362
    • Paul, D.B.1    Baker, J.M.2
  • 210
    • 0036025698 scopus 로고    scopus 로고
    • Poisson-Dirichlet and GEM invariant distributions for split-and-merge transformation of an interval partition
    • Pitman, J. (2002), “Poisson-Dirichlet and GEM invariant distributions for split-and-merge transformation of an interval partition,” Combinatorics, Probability and Computing 11, 501-514.
    • (2002) Combinatorics, Probability and Computing , vol.11 , pp. 501-514
    • Pitman, J.1
  • 212
    • 0031534984 scopus 로고    scopus 로고
    • The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator
    • Pitman, J., and Yor, M. (1997), “The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator,” Annals of Probability 25(2), 855-900.
    • (1997) Annals of Probability , vol.25 , Issue.2 , pp. 855-900
    • Pitman, J.1    Yor, M.2
  • 213
    • 65449138803 scopus 로고    scopus 로고
    • Fast collapsed Gibbs sampling for latent Dirich-let allocation, Proceedings of the 14th ACM SIGKDD International Conference on
    • Porteous, I., Newman, D., Ihler, A., et al. (2008), “Fast collapsed Gibbs sampling for latent Dirich-let allocation,” Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 569-577.
    • (2008) Knowledge Discovery and Data Mining , pp. 569-577
    • Porteous, I.1    Newman, D.2    Ihler, A.3
  • 215
    • 78049409301 scopus 로고    scopus 로고
    • Subspace Gaussian mixture models for speech recognition, Proceedings of International Conference on
    • Povey, D., Burget, L., Agarwal, M., et al. (2010), “Subspace Gaussian mixture models for speech recognition,” Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 4330-4333.
    • (2010) Acoustics, Speech, and Signal Processing (ICASSP) , pp. 4330-4333
    • Povey, D.1    Burget, L.2    Agarwal, M.3
  • 216
    • 85009165931 scopus 로고    scopus 로고
    • MMI-MAP and MPE-MAP for acoustic model adaptation, Proceedings of European Conference on
    • Povey, D., Gales, M. J. F., Kim, D., and Woodland, P. C. (2003), “MMI-MAP and MPE-MAP for acoustic model adaptation,” Proceedings of European Conference on Speech Communication and Technology (EUROSPEECH) 8, 1981-1984.
    • (2003) Speech Communication and Technology (EUROSPEECH) , vol.8 , pp. 1981-1984
    • Povey, D.1    Gales, M.2    Kim, D.3    Woodland, P.C.4
  • 218
    • 51449120120 scopus 로고    scopus 로고
    • Boosted MMI for model and feature-space discriminative training, Proceedings of International Conference on
    • Povey, D., Kanevsky, D., Kingsbury, B., et al. (2008), “Boosted MMI for model and feature-space discriminative training,” Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 4057-4060.
    • (2008) Acoustics, Speech, and Signal Processing (ICASSP) , pp. 4057-4060
    • Povey, D.1    Kanevsky, D.2    Kingsbury, B.3
  • 219
    • 33646788786 scopus 로고    scopus 로고
    • FMPE: Discriminatively trained features for speech recognition, Proceedings of International Conference on
    • Povey, D., Kingsbury, B., Mangu, L., et al. (2005), “fMPE: Discriminatively trained features for speech recognition,” Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 1, 961-964.
    • (2005) Acoustics, Speech, and Signal Processing (ICASSP) , vol.1 , pp. 961-964
    • Povey, D.1    Kingsbury, B.2    Mangu, L.3
  • 220
    • 0036296863 scopus 로고    scopus 로고
    • Minimum phone error and I-smoothing for improved discriminative training, Proceedings of International Conference on
    • Povey, D., and Woodland, P. C. (2002), “Minimum phone error and I-smoothing for improved discriminative training,” Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 13-17.
    • (2002) Acoustics, Speech, and Signal Processing (ICASSP) , pp. 13-17
    • Povey, D.1    Woodland, P.C.2
  • 221
    • 0141480019 scopus 로고    scopus 로고
    • Discriminative MAP for acoustic model adaptation, Proceedings of International Conference on
    • Povey, D., Woodland, P., and Gales, M. (2003), “Discriminative MAP for acoustic model adaptation,” Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 1, 1-312.
    • (2003) Acoustics, Speech, and Signal Processing (ICASSP) , vol.1 , pp. 1-312
    • Povey, D.1    Woodland, P.2    Gales, M.3
  • 222
    • 0023776398 scopus 로고
    • The DARPA 1000-word resource management database for continuous speech recognition, Proceedings of International Conference on
    • Price, P., Fisher, W., Bernstein, J., and Pallett, D. (1988), “The DARPA 1000-word resource management database for continuous speech recognition,” Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 651-654.
    • (1988) Acoustics, Speech, and Signal Processing (ICASSP) , pp. 651-654
    • Price, P.1    Fisher, W.2    Bernstein, J.3    Pallett, D.4
  • 223
    • 0022594196 scopus 로고
    • An introduction to hidden Markov models
    • Rabiner, L. R., and Juang, B.-H. (1986), “An introduction to hidden Markov models,” IEEE ASSP Magazine 3(1), 4-16.
    • (1986) IEEE ASSP Magazine , vol.3 , Issue.1 , pp. 4-16
    • Rabiner, L.R.1    Juang, B.-H.2
  • 227
    • 0033884858 scopus 로고    scopus 로고
    • Speaker verification using adapted Gaussian mixture models
    • Reynolds, D., Quatieri, T., and Dunn, R. (2000), “Speaker verification using adapted Gaussian mixture models,” Digital Signal Processing 10(1-3), 19-41.
    • (2000) Digital Signal Processing , vol.10 , Issue.1-3 , pp. 19-41
    • Reynolds, D.1    Quatieri, T.2    Dunn, R.3
  • 228
    • 0021466584 scopus 로고
    • Universal coding, information, prediction and estimation
    • Rissanen, J. (1984), “Universal coding, information, prediction and estimation,” IEEE Transactions on Information Theory 30, 629-636.
    • (1984) IEEE Transactions on Information Theory , vol.30 , pp. 629-636
    • Rissanen, J.1
  • 230
    • 33646907991 scopus 로고    scopus 로고
    • Two decades of statistical language modeling: Where do we go from here?
    • Rosenfeld, R. (2000), “Two decades of statistical language modeling: Where do we go from here?,” Proceedings of the IEEE 88(8), 1270-1278.
    • (2000) Proceedings of the IEEE , vol.88 , Issue.8 , pp. 1270-1278
    • Rosenfeld, R.1
  • 234
    • 45549117987 scopus 로고
    • Term-weighting approaches in automatic text retrieval
    • Salton, G., and Buckley, C. (1988), “Term-weighting approaches in automatic text retrieval,” Information Processing and Management 24(5), 513-523.
    • (1988) Information Processing and Management , vol.24 , Issue.5 , pp. 513-523
    • Salton, G.1    Buckley, C.2
  • 235
    • 27744546990 scopus 로고    scopus 로고
    • On transforming statistical models for non-frontal face verification
    • Sanderson, C., Bengio, S., and Gao, Y. (2006), “On transforming statistical models for non-frontal face verification,” Pattern Recognition 39(2), 288-302.
    • (2006) Pattern Recognition , vol.39 , Issue.2 , pp. 288-302
    • Sanderson, C.1    Bengio, S.2    Gao, Y.3
  • 236
    • 0030149866 scopus 로고    scopus 로고
    • A maximum-likelihood approach to stochastic matching for robust speech recognition
    • Sankar, A., and Lee, C.-H. (1996), “A maximum-likelihood approach to stochastic matching for robust speech recognition,” IEEE Transactions on Speech and Audio Processing 4(3), 190-202.
    • (1996) IEEE Transactions on Speech and Audio Processing , vol.4 , Issue.3 , pp. 190-202
    • Sankar, A.1    Lee, C.-H.2
  • 239
    • 85032751472 scopus 로고    scopus 로고
    • Large-vocabulary continuous speech recognition systems: A look at some recent advances
    • Saon, G., and Chien, J.-T. (2012fc), “Large-vocabulary continuous speech recognition systems: A look at some recent advances,” IEEE Signal Processing Magazine 29(6), 18-33.
    • (2012) IEEE Signal Processing Magazine , vol.29 , Issue.6 , pp. 18-33
    • Saon, G.1    Chien, J.-T.2
  • 240
    • 84885728886 scopus 로고    scopus 로고
    • Your word is my command: Google search by voice: A case study
    • Springer
    • Schalkwyk, J., Beeferman, D., Beaufays, F., et al. (2010), “‘Your word is my command’: Google search by voice: A case study,” in Advances in Speech Recognition, Springer, pp. 61-90.
    • (2010) In Advances in Speech Recognition , pp. 61-90
    • Schalkwyk, J.1    Beeferman, D.2    Beaufays, F.3
  • 241
    • 0035342391 scopus 로고    scopus 로고
    • Comparison of discriminative training criteria and optimization methods for speech recognition
    • Schluter, R., Macherey, W., Muller, B., and Ney, H. (2001), “Comparison of discriminative training criteria and optimization methods for speech recognition,” Speech Communication 34(3), 287-310.
    • (2001) Speech Communication , vol.34 , Issue.3 , pp. 287-310
    • Schluter, R.1    Macherey, W.2    Muller, B.3    Ney, H.4
  • 242
    • 0035426931 scopus 로고    scopus 로고
    • Language-independent and language-adaptive acoustic modeling for speech recognition
    • Schultz, T., and Waibel, A. (2001), “Language-independent and language-adaptive acoustic modeling for speech recognition,” Speech Communication 35(1), 31-51.
    • (2001) Speech Communication , vol.35 , Issue.1 , pp. 31-51
    • Schultz, T.1    Waibel, A.2
  • 243
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978), “Estimating the dimension of a model,” The Annals of Statistics 6(2), 461-464.
    • (1978) The Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 244
  • 246
    • 0000720609 scopus 로고
    • A constructive definition of Dirichlet priors
    • Sethuraman, J. (1994), “A constructive definition of Dirichlet priors,” Statistica Sinica 4, 639-650.
    • (1994) Statistica Sinica , vol.4 , pp. 639-650
    • Sethuraman, J.1
  • 248
    • 77956865237 scopus 로고    scopus 로고
    • Acoustic model adaptation for speech recognition
    • Shinoda, K. (2010), “Acoustic model adaptation for speech recognition,” IEICE Transactions on Information and Systems 93(9), 2348-2362.
    • (2010) IEICE Transactions on Information and Systems , vol.93 , Issue.9 , pp. 2348-2362
    • Shinoda, K.1
  • 249
    • 85032751976 scopus 로고    scopus 로고
    • Reusing speech techniques for video semantic indexing
    • Shinoda, K., and Inoue, N. (2013), “Reusing speech techniques for video semantic indexing,” IEEE Signal Processing Magazine 30(2), 118-122.
    • (2013) IEEE Signal Processing Magazine , vol.30 , Issue.2 , pp. 118-122
    • Shinoda, K.1    Inoue, N.2
  • 250
    • 0036305005 scopus 로고    scopus 로고
    • Efficient reduction of Gaussian components using MDL criterion for HMM-based speech recognition, Proceedings of International Conference on
    • Shinoda, K., and Iso, K. (2001), “Efficient reduction of Gaussian components using MDL criterion for HMM-based speech recognition,” Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 869-872.
    • (2001) Acoustics, Speech, and Signal Processing (ICASSP) , pp. 869-872
    • Shinoda, K.1    Iso, K.2
  • 252
    • 0029747193 scopus 로고    scopus 로고
    • Speaker adaptation with autonomous model complexity control by MDL principle, Proceedings of International Conference on
    • Shinoda, K., and Watanabe, T. (1996), “Speaker adaptation with autonomous model complexity control by MDL principle,” Proceedings of International Conference on Acoustic, Speech, and Signal Processing (ICASSP), pp. 717-720.
    • (1996) Acoustic, Speech, and Signal Processing (ICASSP) , pp. 717-720
    • Shinoda, K.1    Watanabe, T.2
  • 254
  • 256
    • 0036461005 scopus 로고    scopus 로고
    • Structural maximum a posteriori linear regression for fast HMM adaptation
    • Siohan, O., Myrvoll, T. A., and Lee, C. H. (2002), “Structural maximum a posteriori linear regression for fast HMM adaptation,” Computer Speech and Language 16(1), 5-24.
    • (2002) Computer Speech and Language , vol.16 , Issue.1 , pp. 5-24
    • Siohan, O.1    Myrvoll, T.A.2    Lee, C.H.3
  • 257
    • 84885423493 scopus 로고    scopus 로고
    • Unsupervised training of an HMM-based self-organizing unit recognizer with applications to topic classification and keyword discovery
    • Siu, M.-h., Gish, H., Chan, A., Belfield, W., and Lowe, S. (2014), “Unsupervised training of an HMM-based self-organizing unit recognizer with applications to topic classification and keyword discovery,” Computer Speech and Language 28(1), 210-223.
    • (2014) Computer Speech and Language , vol.28 , Issue.1 , pp. 210-223
    • Siu, M.-H.1    Gish, H.2    Chan, A.3    Belfield, W.4    Lowe, S.5
  • 258
    • 85009144920 scopus 로고    scopus 로고
    • Comparison of ML, MAP, and VB based acoustic models in large vocabulary speech recognition, Proceedings of International Conference on
    • Somervuo, P. (2004), “Comparison of ML, MAP, and VB based acoustic models in large vocabulary speech recognition,” Proceedings of International Conference on Spoken Language Processing (ICSLP), pp. 830-833.
    • (2004) Spoken Language Processing (ICSLP) , pp. 830-833
    • Somervuo, P.1
  • 259
    • 84986980101 scopus 로고
    • Sequential updating of conditional probabilities on directed graphical structures
    • Spiegelhalter, D. J., and Lauritzen, S. L. (1990), “Sequential updating of conditional probabilities on directed graphical structures,” Networks 20(5), 579-605.
    • (1990) Networks , vol.20 , Issue.5 , pp. 579-605
    • Spiegelhalter, D.J.1    Lauritzen, S.L.2
  • 260
    • 0001076101 scopus 로고    scopus 로고
    • A stochastic finite-state word-segmentation algorithm for Chinese
    • Sproat, R., Gale, W., Shih, C., and Chang, N. (1996), “A stochastic finite-state word-segmentation algorithm for Chinese,” Computational Linguistics 22(3), 377-404.
    • (1996) Computational Linguistics , vol.22 , Issue.3 , pp. 377-404
    • Sproat, R.1    Gale, W.2    Shih, C.3    Chang, N.4
  • 264
    • 0031118076 scopus 로고    scopus 로고
    • Vector-field-smoothed Bayesian learning for fast and incremental speaker/telephone-channel adaptation
    • Takahashi, J., and Sagayama, S. (1997), “Vector-field-smoothed Bayesian learning for fast and incremental speaker/telephone-channel adaptation,” Computer Speech and Language 11, 127-146.
    • (1997) Computer Speech and Language , vol.11 , pp. 127-146
    • Takahashi, J.1    Sagayama, S.2
  • 265
    • 85013744934 scopus 로고
    • A successive state splitting algorithm for efficient allo-phone modeling, Proceedings of International Conference on
    • Takami, J., and Sagayama, S. (1992), “A successive state splitting algorithm for efficient allo-phone modeling,” Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 573-576.
    • (1992) Acoustics, Speech, and Signal Processing (ICASSP) , pp. 573-576
    • Takami, J.1    Sagayama, S.2
  • 268
    • 0034842740 scopus 로고    scopus 로고
    • Adaptation of pitch and spectrum for HMM-based speech synthesis using MLLR, Proceedings of International Conference on
    • Tamura, M., Masuko, T., Tokuda, K., and Kobayashi, T. (2001), “Adaptation of pitch and spectrum for HMM-based speech synthesis using MLLR,” Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 805-808.
    • (2001) Acoustics, Speech, and Signal Processing (ICASSP) , pp. 805-808
    • Tamura, M.1    Masuko, T.2    Tokuda, K.3    Kobayashi, T.4
  • 269
    • 84867626020 scopus 로고    scopus 로고
    • Fully Bayesian inference of multi-mixture Gaussian model and its evaluation using speaker clustering, Proceedings of International Conference on
    • Tawara, N., Ogawa, T., Watanabe, S., and Kobayashi, T. (2012a), “Fully Bayesian inference of multi-mixture Gaussian model and its evaluation using speaker clustering,” Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 5253-5256.
    • (2012) Acoustics, Speech, and Signal Processing (ICASSP) , pp. 5253-5256
    • Tawara, N.1    Ogawa, T.2    Watanabe, S.3    Kobayashi, T.4
  • 273
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping, M. E. (2001), “Sparse Bayesian learning and the relevance vector machine,” Journal of Machine Learning Research 1, 211-244.
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 275
    • 0036887504 scopus 로고    scopus 로고
    • Bayesian model search for mixture models based on optimizing variational bounds
    • Ueda, N., and Ghahramani, Z. (2002), “Bayesian model search for mixture models based on optimizing variational bounds,” Neural Networks 15, 1223-1241.
    • (2002) Neural Networks , vol.15 , pp. 1223-1241
    • Ueda, N.1    Ghahramani, Z.2
  • 277
    • 78049405792 scopus 로고    scopus 로고
    • Variational Bayesian speaker diarization of meeting recordings, Proceedings of International Conference on
    • Valente, F., Motlicek, P., and Vijayasenan, D. (2010), “Variational Bayesian speaker diarization of meeting recordings,” Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 4954-4957.
    • (2010) Acoustics, Speech, and Signal Processing (ICASSP) , pp. 4954-4957
    • Valente, F.1    Motlicek, P.2    Vijayasenan, D.3
  • 278
    • 85009174866 scopus 로고    scopus 로고
    • Variational Bayesian GMM for speech recognition, Proceedings of European Conference on
    • Valente, F., and Wellekens, C. (2003), “Variational Bayesian GMM for speech recognition,” Proceedings of European Conference on Speech Communication and Technology (EUROSPEECH), pp. 441-444.
    • (2003) Speech Communication and Technology (EUROSPEECH) , pp. 441-444
    • Valente, F.1    Wellekens, C.2
  • 279
    • 4544354704 scopus 로고    scopus 로고
    • Variational Bayesian feature selection for Gaussian mixture models, Proceedings of International Conference on
    • Valente, F., and Wellekens, C. (2004a), “Variational Bayesian feature selection for Gaussian mixture models,” Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vol. 1, pp. 513-516.
    • (2004) Acoustics, Speech, and Signal Processing (ICASSP) , vol.1 , pp. 513-516
    • Valente, F.1    Wellekens, C.2
  • 284
    • 84893704157 scopus 로고    scopus 로고
    • The second ‘CHiME speech separation and recognition challenge: An overview of challenge systems and outcomes
    • Vincent, E., Barker, J., Watanabe, S., et al. (2013), “The second ‘CHiME’ speech separation and recognition challenge: An overview of challenge systems and outcomes,” Proceedings of IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), pp. 162-167.
    • (2013) IEEE Automatic Speech Recognition and Understanding Workshop (ASRU) , pp. 162-167
    • Vincent, E.1    Barker, J.2    Watanabe, S.3
  • 285
    • 84935113569 scopus 로고
    • Error bounds for convolutional codes and an asymptotically optimal decoding algorithm
    • Viterbi, A. J. (1967), “Error bounds for convolutional codes and an asymptotically optimal decoding algorithm,” IEEE Transactions on Information Theory IT-13, 260-269.
    • (1967) IEEE Transactions on Information Theory , pp. 260-269
    • Viterbi, A.J.1
  • 286
    • 33749245495 scopus 로고    scopus 로고
    • Topic modeling: Beyond bag-of-words, Proceedings of International Conference on
    • Wallach, H. M. (2006), “Topic modeling: beyond bag-of-words,” Proceedings of International Conference on Machine Learning, pp. 977-984.
    • (2006) Machine Learning , pp. 977-984
    • Wallach, H.M.1
  • 290
    • 85009135071 scopus 로고    scopus 로고
    • Acoustic model adaptation based on coarse-fine training of transfer vectors and its application to a speaker adaptation task, Proceedings of International Conference on
    • Watanabe, S., and Nakamura, A. (2004), “Acoustic model adaptation based on coarse-fine training of transfer vectors and its application to a speaker adaptation task,” Proceedings of International Conference on Spoken Language Processing (ICSLP), pp. 2933-2936.
    • (2004) Spoken Language Processing (ICSLP) , pp. 2933-2936
    • Watanabe, S.1    Nakamura, A.2
  • 291
    • 33645785890 scopus 로고    scopus 로고
    • Speech recognition based on Students t-distribution derived from total Bayesian framework
    • Watanabe, S., and Nakamura, A. (2006), “Speech recognition based on Student’s t-distribution derived from total Bayesian framework,” IEICE Transactions on Information and Systems E89-D, 970-980.
    • (2006) IEICE Transactions on Information and Systems , pp. 970-980
    • Watanabe, S.1    Nakamura, A.2
  • 297
    • 0026187945 scopus 로고
    • The zero-frequency problem: Estimating the probabilities of novel events in adaptive text compression
    • Witten, I. H., and Bell, T. C. (1991), “The zero-frequency problem: estimating the probabilities of novel events in adaptive text compression,” IEEE Transactions on Information Theory 37, 1085-1094.
    • (1991) IEEE Transactions on Information Theory , vol.37 , pp. 1085-1094
    • Witten, I.H.1    Bell, T.C.2
  • 298
    • 33646766238 scopus 로고    scopus 로고
    • Towards robust speaker segmentation: The ICSI-SRI fall 2004 diarization system
    • Wooters, C., Fung, J., Peskin, B., and Anguera, X. (2004), “Towards robust speaker segmentation: The ICSI-SRI fall 2004 diarization system,” in RT-04F Workshop, Vol. 23.
    • (2004) RT-04F Workshop , vol.23
    • Wooters, C.1    Fung, J.2    Peskin, B.3    Anguera, X.4
  • 304
    • 0002144369 scopus 로고
    • Tree-based state tying for high accuracy acoustic modelling, Proceedings of the Workshop on
    • Young, S. J., Odell, J. J., and Woodland, P. C. (1994), “Tree-based state tying for high accuracy acoustic modelling,” Proceedings of the Workshop on Human Language Technology, pp. 307-312.
    • (1994) Human Language Technology , pp. 307-312
    • Young, S.J.1    Odell, J.J.2    Woodland, P.C.3
  • 307
    • 70349205593 scopus 로고    scopus 로고
    • An evidence framework for Bayesian learning of continuous-density hidden Markov models, Proceedings of International Conference on
    • Zhang, Y., Liu, P., Chien, J.-T., and Soong, F. (2009), “An evidence framework for Bayesian learning of continuous-density hidden Markov models,” Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 3857-3860.
    • (2009) Acoustics, Speech, and Signal Processing (ICASSP) , pp. 3857-3860
    • Zhang, Y.1    Liu, P.2    Chien, J.-T.3    Soong, F.4
  • 311
    • 0031624532 scopus 로고    scopus 로고
    • Speech recognition with dynamic Bayesian networks, Proceedings of the National Conference on
    • Zweig, G., and Russell, S. (1998), “Speech recognition with dynamic Bayesian networks,” Proceedings of the National Conference on Artificial Intelligence, pp. 173-180.
    • (1998) Artificial Intelligence , pp. 173-180
    • Zweig, G.1    Russell, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.