메뉴 건너뛰기




Volumn 37, Issue 1, 2016, Pages 32-40

Development and Function of Arterial and Cardiac Macrophages

Author keywords

[No Author keywords available]

Indexed keywords

ARTERY; ATHEROSCLEROSIS; CARDIOVASCULAR INFLAMMATION; CELL FUNCTION; CELL MATURATION; HEART MUSCLE CELL; HEMATOPOIESIS; HOMEOSTASIS; HUMAN; MACROPHAGE FUNCTION; NONHUMAN; PATHOGENESIS; REVIEW; ANIMAL; CARDIAC MUSCLE; CELL DIFFERENTIATION; CYTOLOGY; EMBRYO DEVELOPMENT; HEART INFARCTION; MACROPHAGE; MONOCYTE; PATHOLOGY; PHYSIOLOGY;

EID: 84952803329     PISSN: 14714906     EISSN: 14714981     Source Type: Journal    
DOI: 10.1016/j.it.2015.11.004     Document Type: Review
Times cited : (63)

References (87)
  • 1
    • 84888063933 scopus 로고    scopus 로고
    • Beyond stem cells: self-renewal of differentiated macrophages
    • Sieweke M.H., Allen J.E. Beyond stem cells: self-renewal of differentiated macrophages. Science 2013, 342:1242974.
    • (2013) Science , vol.342 , pp. 1242974
    • Sieweke, M.H.1    Allen, J.E.2
  • 2
    • 84904401883 scopus 로고    scopus 로고
    • Origin and functions of tissue macrophages
    • Epelman S., et al. Origin and functions of tissue macrophages. Immunity 2014, 41:21-35.
    • (2014) Immunity , vol.41 , pp. 21-35
    • Epelman, S.1
  • 5
    • 0014325451 scopus 로고
    • The origin and kinetics of mononuclear phagocytes
    • van Furth R., Cohn Z.A. The origin and kinetics of mononuclear phagocytes. J. Exp. Med. 1968, 128:415-435.
    • (1968) J. Exp. Med. , vol.128 , pp. 415-435
    • van Furth, R.1    Cohn, Z.A.2
  • 6
    • 0020084397 scopus 로고
    • Resident macrophage proliferation in mice depleted of blood monocytes by strontium-89
    • Sawyer R.T., et al. Resident macrophage proliferation in mice depleted of blood monocytes by strontium-89. Lab. Invest. 1982, 46:165-170.
    • (1982) Lab. Invest. , vol.46 , pp. 165-170
    • Sawyer, R.T.1
  • 7
    • 0023638337 scopus 로고
    • Self-renewal of pulmonary alveolar macrophages: evidence from radiation chimera studies
    • Tarling J.D., et al. Self-renewal of pulmonary alveolar macrophages: evidence from radiation chimera studies. J. Leukoc. Biol. 1987, 42:443-446.
    • (1987) J. Leukoc. Biol. , vol.42 , pp. 443-446
    • Tarling, J.D.1
  • 8
    • 0026552605 scopus 로고
    • Turnover of resident microglia in the normal adult mouse brain
    • Lawson L.J., et al. Turnover of resident microglia in the normal adult mouse brain. Neuroscience 1992, 48:405-415.
    • (1992) Neuroscience , vol.48 , pp. 405-415
    • Lawson, L.J.1
  • 9
    • 0027030806 scopus 로고
    • Determination of the origin and nature of brain macrophages and microglial cells in mouse central nervous system, using non-radioactive in situ hybridization and immunoperoxidase techniques
    • de Groot C.J., et al. Determination of the origin and nature of brain macrophages and microglial cells in mouse central nervous system, using non-radioactive in situ hybridization and immunoperoxidase techniques. Glia 1992, 6:301-309.
    • (1992) Glia , vol.6 , pp. 301-309
    • de Groot, C.J.1
  • 10
    • 0036906526 scopus 로고    scopus 로고
    • Langerhans cells renew in the skin throughout life under steady-state conditions
    • Merad M., et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat. Immunol. 2002, 3:1135-1141.
    • (2002) Nat. Immunol. , vol.3 , pp. 1135-1141
    • Merad, M.1
  • 11
    • 0025294867 scopus 로고
    • Cell proliferation in human coronary arteries
    • Gordon D., et al. Cell proliferation in human coronary arteries. Proc. Natl. Acad. Sci. U.S.A. 1990, 87:4600-4604.
    • (1990) Proc. Natl. Acad. Sci. U.S.A. , vol.87 , pp. 4600-4604
    • Gordon, D.1
  • 12
    • 0025063716 scopus 로고
    • Macrophage and smooth muscle cell proliferation in atherosclerotic lesions of WHHL and comparably hypercholesterolemic fat-fed rabbits
    • Rosenfeld M.E., Ross R. Macrophage and smooth muscle cell proliferation in atherosclerotic lesions of WHHL and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis 1990, 10:680-687.
    • (1990) Arteriosclerosis , vol.10 , pp. 680-687
    • Rosenfeld, M.E.1    Ross, R.2
  • 13
    • 0027157897 scopus 로고
    • Proliferative activity in peripheral and coronary atherosclerotic plaque among patients undergoing percutaneous revascularization
    • Pickering J.G., et al. Proliferative activity in peripheral and coronary atherosclerotic plaque among patients undergoing percutaneous revascularization. J. Clin. Invest. 1993, 91:1469-1480.
    • (1993) J. Clin. Invest. , vol.91 , pp. 1469-1480
    • Pickering, J.G.1
  • 14
    • 0028978776 scopus 로고
    • Active proliferation of different cell types, including lymphocytes, in human atherosclerotic plaques
    • Rekhter M.D., Gordon D. Active proliferation of different cell types, including lymphocytes, in human atherosclerotic plaques. Am. J. Pathol. 1995, 147:668-677.
    • (1995) Am. J. Pathol. , vol.147 , pp. 668-677
    • Rekhter, M.D.1    Gordon, D.2
  • 15
    • 0032589979 scopus 로고    scopus 로고
    • Atherosclerosis in APOE*3-Leiden transgenic mice: from proliferative to atheromatous stage
    • Lutgens E., et al. Atherosclerosis in APOE*3-Leiden transgenic mice: from proliferative to atheromatous stage. Circulation 1999, 99:276-283.
    • (1999) Circulation , vol.99 , pp. 276-283
    • Lutgens, E.1
  • 16
    • 0033019113 scopus 로고    scopus 로고
    • Biphasic pattern of cell turnover characterizes the progression from fatty streaks to ruptured human atherosclerotic plaques
    • Lutgens E., et al. Biphasic pattern of cell turnover characterizes the progression from fatty streaks to ruptured human atherosclerotic plaques. Cardiovasc. Res. 1999, 41:473-479.
    • (1999) Cardiovasc. Res. , vol.41 , pp. 473-479
    • Lutgens, E.1
  • 17
    • 84907605171 scopus 로고    scopus 로고
    • Human CD68 promoter GFP transgenic mice allow analysis of monocyte to macrophage differentiation in vivo
    • Iqbal A.J., et al. Human CD68 promoter GFP transgenic mice allow analysis of monocyte to macrophage differentiation in vivo. Blood 2014, 124:e33-e44.
    • (2014) Blood , vol.124 , pp. e33-e44
    • Iqbal, A.J.1
  • 18
    • 73949147392 scopus 로고    scopus 로고
    • Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network
    • Chorro L., et al. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J. Exp. Med. 2009, 206:3089-3100.
    • (2009) J. Exp. Med. , vol.206 , pp. 3089-3100
    • Chorro, L.1
  • 19
    • 78149360132 scopus 로고    scopus 로고
    • Fate mapping analysis reveals that adult microglia derive from primitive macrophages
    • Ginhoux F., et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010, 330:841-845.
    • (2010) Science , vol.330 , pp. 841-845
    • Ginhoux, F.1
  • 20
    • 84872765982 scopus 로고    scopus 로고
    • Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis
    • Yona S., et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 2013, 38:79-91.
    • (2013) Immunity , vol.38 , pp. 79-91
    • Yona, S.1
  • 21
    • 84876775203 scopus 로고    scopus 로고
    • Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes
    • Hashimoto D., et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 2013, 38:792-804.
    • (2013) Immunity , vol.38 , pp. 792-804
    • Hashimoto, D.1
  • 22
    • 84940984138 scopus 로고    scopus 로고
    • Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells
    • Sheng J., et al. Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells. Immunity 2015, 43:382-393.
    • (2015) Immunity , vol.43 , pp. 382-393
    • Sheng, J.1
  • 23
    • 84859508307 scopus 로고    scopus 로고
    • A lineage of myeloid cells independent of Myb and hematopoietic stem cells
    • Schulz C., et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 2012, 336:86-90.
    • (2012) Science , vol.336 , pp. 86-90
    • Schulz, C.1
  • 24
    • 84925465211 scopus 로고    scopus 로고
    • Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors
    • Gomez Perdiguero E., et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 2015, 518:547-551.
    • (2015) Nature , vol.518 , pp. 547-551
    • Gomez Perdiguero, E.1
  • 25
    • 84864298329 scopus 로고    scopus 로고
    • Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages
    • Hoeffel G., et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J. Exp. Med. 2012, 209:1167-1181.
    • (2012) J. Exp. Med. , vol.209 , pp. 1167-1181
    • Hoeffel, G.1
  • 26
    • 84928189502 scopus 로고    scopus 로고
    • + erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages
    • + erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 2015, 42:665-678.
    • (2015) Immunity , vol.42 , pp. 665-678
    • Hoeffel, G.1
  • 27
    • 84921313153 scopus 로고    scopus 로고
    • Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice
    • Bain C.C., et al. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat. Immunol. 2014, 15:929-937.
    • (2014) Nat. Immunol. , vol.15 , pp. 929-937
    • Bain, C.C.1
  • 28
    • 84901358607 scopus 로고    scopus 로고
    • Monocytes and macrophages: developmental pathways and tissue homeostasis
    • Ginhoux F., Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 2014, 14:392-404.
    • (2014) Nat. Rev. Immunol. , vol.14 , pp. 392-404
    • Ginhoux, F.1    Jung, S.2
  • 29
    • 84880032882 scopus 로고    scopus 로고
    • Monocyte and macrophage heterogeneity in the heart
    • Nahrendorf M., Swirski F.K. Monocyte and macrophage heterogeneity in the heart. Circ Res. 2013, 112:1624-1633.
    • (2013) Circ Res. , vol.112 , pp. 1624-1633
    • Nahrendorf, M.1    Swirski, F.K.2
  • 30
    • 84860997131 scopus 로고    scopus 로고
    • An abundant tissue macrophage population in the adult murine heart with a distinct alternatively-activated macrophage profile
    • Pinto A.R., et al. An abundant tissue macrophage population in the adult murine heart with a distinct alternatively-activated macrophage profile. PLoS ONE 2012, 7:e36814.
    • (2012) PLoS ONE , vol.7 , pp. e36814
    • Pinto, A.R.1
  • 31
    • 84892450644 scopus 로고    scopus 로고
    • Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation
    • Epelman S., et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 2014, 40:91-104.
    • (2014) Immunity , vol.40 , pp. 91-104
    • Epelman, S.1
  • 32
    • 84904070112 scopus 로고    scopus 로고
    • Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction
    • Heidt T., et al. Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circ. Res. 2014, 115:284-295.
    • (2014) Circ. Res. , vol.115 , pp. 284-295
    • Heidt, T.1
  • 33
    • 84908227801 scopus 로고    scopus 로고
    • Progressive replacement of embryo-derived cardiac macrophages with age
    • Molawi K., et al. Progressive replacement of embryo-derived cardiac macrophages with age. J. Exp. Med. 2014, 211:2151-2158.
    • (2014) J. Exp. Med. , vol.211 , pp. 2151-2158
    • Molawi, K.1
  • 34
    • 84952819751 scopus 로고    scopus 로고
    • Self-renewing resident arterial macrophages arise from embryonic Cx3cr1+ precursors and circulating monocytes immediately after birth.
    • (Epub ahead of print)
    • Ensan, S. et al. Self-renewing resident arterial macrophages arise from embryonic Cx3cr1+ precursors and circulating monocytes immediately after birth. Nat. Immunol. (Epub ahead of print).
    • Nat. Immunol.
    • Ensan, S.1
  • 35
    • 84867740805 scopus 로고    scopus 로고
    • Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages
    • Gautier E.L., et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 2012, 13:1118-1128.
    • (2012) Nat. Immunol. , vol.13 , pp. 1118-1128
    • Gautier, E.L.1
  • 36
    • 84920724791 scopus 로고    scopus 로고
    • Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment
    • Lavin Y., et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 2014, 159:1312-1326.
    • (2014) Cell , vol.159 , pp. 1312-1326
    • Lavin, Y.1
  • 37
    • 84920724792 scopus 로고    scopus 로고
    • Environment drives selection and function of enhancers controlling tissue-specific macrophage identities
    • Gosselin D., et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 2014, 159:1327-1340.
    • (2014) Cell , vol.159 , pp. 1327-1340
    • Gosselin, D.1
  • 38
    • 84900413094 scopus 로고    scopus 로고
    • Tissue-specific signals control reversible program of localization and functional polarization of macrophages
    • Okabe Y., Medzhitov R. Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell 2014, 157:832-844.
    • (2014) Cell , vol.157 , pp. 832-844
    • Okabe, Y.1    Medzhitov, R.2
  • 39
    • 58249104981 scopus 로고    scopus 로고
    • Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis
    • Kohyama M., et al. Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis. Nature 2009, 457:318-321.
    • (2009) Nature , vol.457 , pp. 318-321
    • Kohyama, M.1
  • 40
    • 80052633284 scopus 로고    scopus 로고
    • Synaptic pruning by microglia is necessary for normal brain development
    • Paolicelli R.C., et al. Synaptic pruning by microglia is necessary for normal brain development. Science 2011, 333:1456-1458.
    • (2011) Science , vol.333 , pp. 1456-1458
    • Paolicelli, R.C.1
  • 41
    • 84920940940 scopus 로고    scopus 로고
    • Pulmonary macrophage transplantation therapy
    • Suzuki T., et al. Pulmonary macrophage transplantation therapy. Nature 2014, 514:450-454.
    • (2014) Nature , vol.514 , pp. 450-454
    • Suzuki, T.1
  • 42
    • 82555186955 scopus 로고    scopus 로고
    • Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis
    • Nguyen K.D., et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 2011, 480:104-108.
    • (2011) Nature , vol.480 , pp. 104-108
    • Nguyen, K.D.1
  • 43
    • 84902094655 scopus 로고    scopus 로고
    • Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat
    • Qiu Y., et al. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 2014, 157:1292-1308.
    • (2014) Cell , vol.157 , pp. 1292-1308
    • Qiu, Y.1
  • 44
    • 84878444005 scopus 로고    scopus 로고
    • + macrophages provide a niche promoting erythropoiesis under homeostasis and stress
    • + macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat. Med. 2013, 19:429-436.
    • (2013) Nat. Med. , vol.19 , pp. 429-436
    • Chow, A.1
  • 45
    • 84928254121 scopus 로고    scopus 로고
    • Macrophages retain hematopoietic stem cells in the spleen via VCAM-1
    • Dutta P., et al. Macrophages retain hematopoietic stem cells in the spleen via VCAM-1. J. Exp. Med. 2015, 212:497-512.
    • (2015) J. Exp. Med. , vol.212 , pp. 497-512
    • Dutta, P.1
  • 46
    • 66749106368 scopus 로고    scopus 로고
    • Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism
    • Machnik A., et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat. Med. 2009, 15:545-552.
    • (2009) Nat. Med. , vol.15 , pp. 545-552
    • Machnik, A.1
  • 47
    • 84879616239 scopus 로고    scopus 로고
    • Immune cells control skin lymphatic electrolyte homeostasis and blood pressure
    • Wiig H., et al. Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J. Clin. Invest. 2013, 123:2803-2815.
    • (2013) J. Clin. Invest. , vol.123 , pp. 2803-2815
    • Wiig, H.1
  • 48
    • 84885318684 scopus 로고    scopus 로고
    • Enhanced efferocytosis of apoptotic cardiomyocytes through myeloid-epithelial-reproductive tyrosine kinase links acute inflammation resolution to cardiac repair after infarction
    • Wan E., et al. Enhanced efferocytosis of apoptotic cardiomyocytes through myeloid-epithelial-reproductive tyrosine kinase links acute inflammation resolution to cardiac repair after infarction. Circ. Res. 2013, 113:1004-1012.
    • (2013) Circ. Res. , vol.113 , pp. 1004-1012
    • Wan, E.1
  • 49
    • 84911409677 scopus 로고    scopus 로고
    • Macrophages in cardiac homeostasis, injury responses and progenitor cell mobilisation
    • Pinto A.R., et al. Macrophages in cardiac homeostasis, injury responses and progenitor cell mobilisation. Stem Cell Res. 2014, 13:705-714.
    • (2014) Stem Cell Res. , vol.13 , pp. 705-714
    • Pinto, A.R.1
  • 50
    • 84896799309 scopus 로고    scopus 로고
    • Macrophages are required for neonatal heart regeneration
    • Aurora A.B., et al. Macrophages are required for neonatal heart regeneration. J. Clin. Invest. 2014, 124:1382-1392.
    • (2014) J. Clin. Invest. , vol.124 , pp. 1382-1392
    • Aurora, A.B.1
  • 51
    • 84909594606 scopus 로고    scopus 로고
    • Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart
    • Lavine K.J., et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:16029-16034.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 16029-16034
    • Lavine, K.J.1
  • 52
    • 84900331122 scopus 로고    scopus 로고
    • A proliferative burst during preadolescence establishes the final cardiomyocyte number
    • Naqvi N., et al. A proliferative burst during preadolescence establishes the final cardiomyocyte number. Cell 2014, 157:795-807.
    • (2014) Cell , vol.157 , pp. 795-807
    • Naqvi, N.1
  • 53
    • 84944881554 scopus 로고    scopus 로고
    • Myeloid suppressor cells accumulate and regulate blood pressure in hypertension
    • Shah K.H., et al. Myeloid suppressor cells accumulate and regulate blood pressure in hypertension. Circ. Res. 2015, 117:858-869.
    • (2015) Circ. Res. , vol.117 , pp. 858-869
    • Shah, K.H.1
  • 54
    • 84928594102 scopus 로고    scopus 로고
    • Macrophages in vascular inflammation - from atherosclerosis to vasculitis
    • Shirai T., et al. Macrophages in vascular inflammation - from atherosclerosis to vasculitis. Autoimmunity 2015, 48:139-151.
    • (2015) Autoimmunity , vol.48 , pp. 139-151
    • Shirai, T.1
  • 55
    • 84959903923 scopus 로고    scopus 로고
    • Immune mechanisms in arterial hypertension
    • Published online August 28, 2015
    • Wenzel U., et al. Immune mechanisms in arterial hypertension. J. Am. Soc. Nephrol. 2015, Published online August 28, 2015. 10.1681/ASN. 2015050562.
    • (2015) J. Am. Soc. Nephrol.
    • Wenzel, U.1
  • 56
    • 84940728384 scopus 로고    scopus 로고
    • M2 macrophage accumulation in the aortic wall during angiotensin II infusion in mice is associated with fibrosis, elastin loss, and elevated blood pressure
    • Moore J.P., et al. M2 macrophage accumulation in the aortic wall during angiotensin II infusion in mice is associated with fibrosis, elastin loss, and elevated blood pressure. Am. J. Physiol. Heart Circ. Physiol. 2015, 309:H906-H917.
    • (2015) Am. J. Physiol. Heart Circ. Physiol. , vol.309 , pp. H906-H917
    • Moore, J.P.1
  • 57
    • 84872166189 scopus 로고    scopus 로고
    • Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure
    • Swirski F.K., Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 2013, 339:161-166.
    • (2013) Science , vol.339 , pp. 161-166
    • Swirski, F.K.1    Nahrendorf, M.2
  • 58
    • 77953350982 scopus 로고    scopus 로고
    • Monocytes: protagonists of infarct inflammation and repair after myocardial infarction
    • Nahrendorf M., et al. Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 2010, 121:2437-2445.
    • (2010) Circulation , vol.121 , pp. 2437-2445
    • Nahrendorf, M.1
  • 59
    • 15244363201 scopus 로고    scopus 로고
    • Chemokines in the ischemic myocardium: from inflammation to fibrosis
    • Frangogiannis N.G. Chemokines in the ischemic myocardium: from inflammation to fibrosis. Inflamm. Res. 2004, 53:585-595.
    • (2004) Inflamm. Res. , vol.53 , pp. 585-595
    • Frangogiannis, N.G.1
  • 60
    • 36549033197 scopus 로고    scopus 로고
    • The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions
    • Nahrendorf M., et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 2007, 204:3037-3047.
    • (2007) J. Exp. Med. , vol.204 , pp. 3037-3047
    • Nahrendorf, M.1
  • 61
    • 20944449211 scopus 로고    scopus 로고
    • CCL2/monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts
    • Dewald O., et al. CCL2/monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ. Res. 2005, 96:881-889.
    • (2005) Circ. Res. , vol.96 , pp. 881-889
    • Dewald, O.1
  • 62
    • 84901056045 scopus 로고    scopus 로고
    • high monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium
    • high monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium. Circ. Res. 2014, 114:1611-1622.
    • (2014) Circ. Res. , vol.114 , pp. 1611-1622
    • Hilgendorf, I.1
  • 63
    • 84900844706 scopus 로고    scopus 로고
    • In vivo silencing of the transcription factor IRF5 reprograms the macrophage phenotype and improves infarct healing
    • Courties G., et al. In vivo silencing of the transcription factor IRF5 reprograms the macrophage phenotype and improves infarct healing. J. Am. Coll. Cardiol. 2014, 63:1556-1566.
    • (2014) J. Am. Coll. Cardiol. , vol.63 , pp. 1556-1566
    • Courties, G.1
  • 64
    • 84922609359 scopus 로고    scopus 로고
    • Myeloid-derived growth factor (C19orf10) mediates cardiac repair following myocardial infarction
    • Korf-Klingebiel M., et al. Myeloid-derived growth factor (C19orf10) mediates cardiac repair following myocardial infarction. Nat. Med. 2015, 21:140-149.
    • (2015) Nat. Med. , vol.21 , pp. 140-149
    • Korf-Klingebiel, M.1
  • 65
    • 84923061601 scopus 로고    scopus 로고
    • Role of innate and adaptive immune mechanisms in cardiac injury and repair
    • Epelman S., et al. Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nat. Rev. Immunol. 2015, 15:117-129.
    • (2015) Nat. Rev. Immunol. , vol.15 , pp. 117-129
    • Epelman, S.1
  • 66
    • 84930583466 scopus 로고    scopus 로고
    • Myocardial healing requires Reg3beta-dependent accumulation of macrophages in the ischemic heart
    • Lorchner H., et al. Myocardial healing requires Reg3beta-dependent accumulation of macrophages in the ischemic heart. Nat. Med. 2015, 21:353-362.
    • (2015) Nat. Med. , vol.21 , pp. 353-362
    • Lorchner, H.1
  • 67
    • 84907543940 scopus 로고    scopus 로고
    • MTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity
    • Cheng S.C., et al. mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 2014, 345:1250684.
    • (2014) Science , vol.345 , pp. 1250684
    • Cheng, S.C.1
  • 68
    • 79956080152 scopus 로고    scopus 로고
    • Trained immunity: a memory for innate host defense
    • Netea M.G., et al. Trained immunity: a memory for innate host defense. Cell Host Microbe 2011, 9:355-361.
    • (2011) Cell Host Microbe , vol.9 , pp. 355-361
    • Netea, M.G.1
  • 69
    • 84907483941 scopus 로고    scopus 로고
    • Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity
    • Saeed S., et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 2014, 345:1251086.
    • (2014) Science , vol.345 , pp. 1251086
    • Saeed, S.1
  • 70
    • 79955535643 scopus 로고    scopus 로고
    • Macrophages in the pathogenesis of atherosclerosis
    • Moore K.J., Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell 2011, 145:341-355.
    • (2011) Cell , vol.145 , pp. 341-355
    • Moore, K.J.1    Tabas, I.2
  • 71
    • 84886797808 scopus 로고    scopus 로고
    • Macrophages in atherosclerosis: a dynamic balance
    • Moore K.J., et al. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol. 2013, 13:709-721.
    • (2013) Nat. Rev. Immunol. , vol.13 , pp. 709-721
    • Moore, K.J.1
  • 72
    • 84923046255 scopus 로고    scopus 로고
    • Cholesterol, inflammation and innate immunity
    • Tall A.R., Yvan-Charvet L. Cholesterol, inflammation and innate immunity. Nat. Rev. Immunol. 2015, 15:104-116.
    • (2015) Nat. Rev. Immunol. , vol.15 , pp. 104-116
    • Tall, A.R.1    Yvan-Charvet, L.2
  • 73
    • 84879569545 scopus 로고    scopus 로고
    • Immune effector mechanisms implicated in atherosclerosis: from mice to humans
    • Libby P., et al. Immune effector mechanisms implicated in atherosclerosis: from mice to humans. Immunity 2013, 38:1092-1104.
    • (2013) Immunity , vol.38 , pp. 1092-1104
    • Libby, P.1
  • 74
    • 0037180771 scopus 로고    scopus 로고
    • Inflammation in atherosclerosis
    • Libby P. Inflammation in atherosclerosis. Nature 2002, 420:868-874.
    • (2002) Nature , vol.420 , pp. 868-874
    • Libby, P.1
  • 75
    • 33845970192 scopus 로고    scopus 로고
    • Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata
    • Swirski F.K., et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J. Clin. Invest. 2007, 117:195-205.
    • (2007) J. Clin. Invest. , vol.117 , pp. 195-205
    • Swirski, F.K.1
  • 76
    • 33845989083 scopus 로고    scopus 로고
    • Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques
    • Tacke F., et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest. 2007, 117:185-194.
    • (2007) J. Clin. Invest. , vol.117 , pp. 185-194
    • Tacke, F.1
  • 77
    • 84883800208 scopus 로고    scopus 로고
    • Local proliferation dominates lesional macrophage accumulation in atherosclerosis
    • Robbins C.S., et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat. Med. 2013, 19:1166-1172.
    • (2013) Nat. Med. , vol.19 , pp. 1166-1172
    • Robbins, C.S.1
  • 78
    • 72949116358 scopus 로고    scopus 로고
    • Macrophage death and defective inflammation resolution in atherosclerosis
    • Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat. Rev. Immunol. 2010, 10:36-46.
    • (2010) Nat. Rev. Immunol. , vol.10 , pp. 36-46
    • Tabas, I.1
  • 79
    • 84855928422 scopus 로고    scopus 로고
    • The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques
    • van Gils J.M., et al. The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques. Nat. Immunol. 2012, 13:136-143.
    • (2012) Nat. Immunol. , vol.13 , pp. 136-143
    • van Gils, J.M.1
  • 80
    • 79958715229 scopus 로고    scopus 로고
    • Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation
    • Jenkins S.J., et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 2011, 332:1284-1288.
    • (2011) Science , vol.332 , pp. 1284-1288
    • Jenkins, S.J.1
  • 81
    • 33745876256 scopus 로고    scopus 로고
    • Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease
    • Swirski F.K., et al. Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:10340-10345.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 10340-10345
    • Swirski, F.K.1
  • 82
    • 84884352076 scopus 로고    scopus 로고
    • Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes
    • Jakubzick C., et al. Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity 2013, 39:599-610.
    • (2013) Immunity , vol.39 , pp. 599-610
    • Jakubzick, C.1
  • 83
    • 68149119072 scopus 로고    scopus 로고
    • Identification of splenic reservoir monocytes and their deployment to inflammatory sites
    • Swirski F.K., et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 2009, 325:612-616.
    • (2009) Science , vol.325 , pp. 612-616
    • Swirski, F.K.1
  • 84
    • 84937634493 scopus 로고    scopus 로고
    • Leukotriene B4-neutrophil elastase axis drives neutrophil reverse transendothelial cell migration in vivo
    • Colom B., et al. Leukotriene B4-neutrophil elastase axis drives neutrophil reverse transendothelial cell migration in vivo. Immunity 2015, 42:1075-1086.
    • (2015) Immunity , vol.42 , pp. 1075-1086
    • Colom, B.1
  • 85
    • 84912093807 scopus 로고    scopus 로고
    • Leukocyte migration into inflamed tissues
    • Nourshargh S., Alon R. Leukocyte migration into inflamed tissues. Immunity 2014, 41:694-707.
    • (2014) Immunity , vol.41 , pp. 694-707
    • Nourshargh, S.1    Alon, R.2
  • 86
    • 80355131976 scopus 로고    scopus 로고
    • Protective and pathogenic functions of macrophage subsets
    • Murray P.J., Wynn T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 2011, 11:723-737.
    • (2011) Nat. Rev. Immunol. , vol.11 , pp. 723-737
    • Murray, P.J.1    Wynn, T.A.2
  • 87
    • 84888081111 scopus 로고    scopus 로고
    • On-site education of VEGF-recruited monocytes improves their performance as angiogenic and arteriogenic accessory cells
    • Avraham-Davidi I., et al. On-site education of VEGF-recruited monocytes improves their performance as angiogenic and arteriogenic accessory cells. J. Exp. Med. 2013, 210:2611-2625.
    • (2013) J. Exp. Med. , vol.210 , pp. 2611-2625
    • Avraham-Davidi, I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.