-
1
-
-
84888063933
-
Beyond stem cells: self-renewal of differentiated macrophages
-
Sieweke M.H., Allen J.E. Beyond stem cells: self-renewal of differentiated macrophages. Science 2013, 342:1242974.
-
(2013)
Science
, vol.342
, pp. 1242974
-
-
Sieweke, M.H.1
Allen, J.E.2
-
2
-
-
84904401883
-
Origin and functions of tissue macrophages
-
Epelman S., et al. Origin and functions of tissue macrophages. Immunity 2014, 41:21-35.
-
(2014)
Immunity
, vol.41
, pp. 21-35
-
-
Epelman, S.1
-
5
-
-
0014325451
-
The origin and kinetics of mononuclear phagocytes
-
van Furth R., Cohn Z.A. The origin and kinetics of mononuclear phagocytes. J. Exp. Med. 1968, 128:415-435.
-
(1968)
J. Exp. Med.
, vol.128
, pp. 415-435
-
-
van Furth, R.1
Cohn, Z.A.2
-
6
-
-
0020084397
-
Resident macrophage proliferation in mice depleted of blood monocytes by strontium-89
-
Sawyer R.T., et al. Resident macrophage proliferation in mice depleted of blood monocytes by strontium-89. Lab. Invest. 1982, 46:165-170.
-
(1982)
Lab. Invest.
, vol.46
, pp. 165-170
-
-
Sawyer, R.T.1
-
7
-
-
0023638337
-
Self-renewal of pulmonary alveolar macrophages: evidence from radiation chimera studies
-
Tarling J.D., et al. Self-renewal of pulmonary alveolar macrophages: evidence from radiation chimera studies. J. Leukoc. Biol. 1987, 42:443-446.
-
(1987)
J. Leukoc. Biol.
, vol.42
, pp. 443-446
-
-
Tarling, J.D.1
-
8
-
-
0026552605
-
Turnover of resident microglia in the normal adult mouse brain
-
Lawson L.J., et al. Turnover of resident microglia in the normal adult mouse brain. Neuroscience 1992, 48:405-415.
-
(1992)
Neuroscience
, vol.48
, pp. 405-415
-
-
Lawson, L.J.1
-
9
-
-
0027030806
-
Determination of the origin and nature of brain macrophages and microglial cells in mouse central nervous system, using non-radioactive in situ hybridization and immunoperoxidase techniques
-
de Groot C.J., et al. Determination of the origin and nature of brain macrophages and microglial cells in mouse central nervous system, using non-radioactive in situ hybridization and immunoperoxidase techniques. Glia 1992, 6:301-309.
-
(1992)
Glia
, vol.6
, pp. 301-309
-
-
de Groot, C.J.1
-
10
-
-
0036906526
-
Langerhans cells renew in the skin throughout life under steady-state conditions
-
Merad M., et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat. Immunol. 2002, 3:1135-1141.
-
(2002)
Nat. Immunol.
, vol.3
, pp. 1135-1141
-
-
Merad, M.1
-
11
-
-
0025294867
-
Cell proliferation in human coronary arteries
-
Gordon D., et al. Cell proliferation in human coronary arteries. Proc. Natl. Acad. Sci. U.S.A. 1990, 87:4600-4604.
-
(1990)
Proc. Natl. Acad. Sci. U.S.A.
, vol.87
, pp. 4600-4604
-
-
Gordon, D.1
-
12
-
-
0025063716
-
Macrophage and smooth muscle cell proliferation in atherosclerotic lesions of WHHL and comparably hypercholesterolemic fat-fed rabbits
-
Rosenfeld M.E., Ross R. Macrophage and smooth muscle cell proliferation in atherosclerotic lesions of WHHL and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis 1990, 10:680-687.
-
(1990)
Arteriosclerosis
, vol.10
, pp. 680-687
-
-
Rosenfeld, M.E.1
Ross, R.2
-
13
-
-
0027157897
-
Proliferative activity in peripheral and coronary atherosclerotic plaque among patients undergoing percutaneous revascularization
-
Pickering J.G., et al. Proliferative activity in peripheral and coronary atherosclerotic plaque among patients undergoing percutaneous revascularization. J. Clin. Invest. 1993, 91:1469-1480.
-
(1993)
J. Clin. Invest.
, vol.91
, pp. 1469-1480
-
-
Pickering, J.G.1
-
14
-
-
0028978776
-
Active proliferation of different cell types, including lymphocytes, in human atherosclerotic plaques
-
Rekhter M.D., Gordon D. Active proliferation of different cell types, including lymphocytes, in human atherosclerotic plaques. Am. J. Pathol. 1995, 147:668-677.
-
(1995)
Am. J. Pathol.
, vol.147
, pp. 668-677
-
-
Rekhter, M.D.1
Gordon, D.2
-
15
-
-
0032589979
-
Atherosclerosis in APOE*3-Leiden transgenic mice: from proliferative to atheromatous stage
-
Lutgens E., et al. Atherosclerosis in APOE*3-Leiden transgenic mice: from proliferative to atheromatous stage. Circulation 1999, 99:276-283.
-
(1999)
Circulation
, vol.99
, pp. 276-283
-
-
Lutgens, E.1
-
16
-
-
0033019113
-
Biphasic pattern of cell turnover characterizes the progression from fatty streaks to ruptured human atherosclerotic plaques
-
Lutgens E., et al. Biphasic pattern of cell turnover characterizes the progression from fatty streaks to ruptured human atherosclerotic plaques. Cardiovasc. Res. 1999, 41:473-479.
-
(1999)
Cardiovasc. Res.
, vol.41
, pp. 473-479
-
-
Lutgens, E.1
-
17
-
-
84907605171
-
Human CD68 promoter GFP transgenic mice allow analysis of monocyte to macrophage differentiation in vivo
-
Iqbal A.J., et al. Human CD68 promoter GFP transgenic mice allow analysis of monocyte to macrophage differentiation in vivo. Blood 2014, 124:e33-e44.
-
(2014)
Blood
, vol.124
, pp. e33-e44
-
-
Iqbal, A.J.1
-
18
-
-
73949147392
-
Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network
-
Chorro L., et al. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J. Exp. Med. 2009, 206:3089-3100.
-
(2009)
J. Exp. Med.
, vol.206
, pp. 3089-3100
-
-
Chorro, L.1
-
19
-
-
78149360132
-
Fate mapping analysis reveals that adult microglia derive from primitive macrophages
-
Ginhoux F., et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010, 330:841-845.
-
(2010)
Science
, vol.330
, pp. 841-845
-
-
Ginhoux, F.1
-
20
-
-
84872765982
-
Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis
-
Yona S., et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 2013, 38:79-91.
-
(2013)
Immunity
, vol.38
, pp. 79-91
-
-
Yona, S.1
-
21
-
-
84876775203
-
Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes
-
Hashimoto D., et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 2013, 38:792-804.
-
(2013)
Immunity
, vol.38
, pp. 792-804
-
-
Hashimoto, D.1
-
22
-
-
84940984138
-
Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells
-
Sheng J., et al. Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells. Immunity 2015, 43:382-393.
-
(2015)
Immunity
, vol.43
, pp. 382-393
-
-
Sheng, J.1
-
23
-
-
84859508307
-
A lineage of myeloid cells independent of Myb and hematopoietic stem cells
-
Schulz C., et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 2012, 336:86-90.
-
(2012)
Science
, vol.336
, pp. 86-90
-
-
Schulz, C.1
-
24
-
-
84925465211
-
Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors
-
Gomez Perdiguero E., et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 2015, 518:547-551.
-
(2015)
Nature
, vol.518
, pp. 547-551
-
-
Gomez Perdiguero, E.1
-
25
-
-
84864298329
-
Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages
-
Hoeffel G., et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J. Exp. Med. 2012, 209:1167-1181.
-
(2012)
J. Exp. Med.
, vol.209
, pp. 1167-1181
-
-
Hoeffel, G.1
-
26
-
-
84928189502
-
+ erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages
-
+ erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 2015, 42:665-678.
-
(2015)
Immunity
, vol.42
, pp. 665-678
-
-
Hoeffel, G.1
-
27
-
-
84921313153
-
Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice
-
Bain C.C., et al. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat. Immunol. 2014, 15:929-937.
-
(2014)
Nat. Immunol.
, vol.15
, pp. 929-937
-
-
Bain, C.C.1
-
28
-
-
84901358607
-
Monocytes and macrophages: developmental pathways and tissue homeostasis
-
Ginhoux F., Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 2014, 14:392-404.
-
(2014)
Nat. Rev. Immunol.
, vol.14
, pp. 392-404
-
-
Ginhoux, F.1
Jung, S.2
-
29
-
-
84880032882
-
Monocyte and macrophage heterogeneity in the heart
-
Nahrendorf M., Swirski F.K. Monocyte and macrophage heterogeneity in the heart. Circ Res. 2013, 112:1624-1633.
-
(2013)
Circ Res.
, vol.112
, pp. 1624-1633
-
-
Nahrendorf, M.1
Swirski, F.K.2
-
30
-
-
84860997131
-
An abundant tissue macrophage population in the adult murine heart with a distinct alternatively-activated macrophage profile
-
Pinto A.R., et al. An abundant tissue macrophage population in the adult murine heart with a distinct alternatively-activated macrophage profile. PLoS ONE 2012, 7:e36814.
-
(2012)
PLoS ONE
, vol.7
, pp. e36814
-
-
Pinto, A.R.1
-
31
-
-
84892450644
-
Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation
-
Epelman S., et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 2014, 40:91-104.
-
(2014)
Immunity
, vol.40
, pp. 91-104
-
-
Epelman, S.1
-
32
-
-
84904070112
-
Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction
-
Heidt T., et al. Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circ. Res. 2014, 115:284-295.
-
(2014)
Circ. Res.
, vol.115
, pp. 284-295
-
-
Heidt, T.1
-
33
-
-
84908227801
-
Progressive replacement of embryo-derived cardiac macrophages with age
-
Molawi K., et al. Progressive replacement of embryo-derived cardiac macrophages with age. J. Exp. Med. 2014, 211:2151-2158.
-
(2014)
J. Exp. Med.
, vol.211
, pp. 2151-2158
-
-
Molawi, K.1
-
34
-
-
84952819751
-
Self-renewing resident arterial macrophages arise from embryonic Cx3cr1+ precursors and circulating monocytes immediately after birth.
-
(Epub ahead of print)
-
Ensan, S. et al. Self-renewing resident arterial macrophages arise from embryonic Cx3cr1+ precursors and circulating monocytes immediately after birth. Nat. Immunol. (Epub ahead of print).
-
Nat. Immunol.
-
-
Ensan, S.1
-
35
-
-
84867740805
-
Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages
-
Gautier E.L., et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 2012, 13:1118-1128.
-
(2012)
Nat. Immunol.
, vol.13
, pp. 1118-1128
-
-
Gautier, E.L.1
-
36
-
-
84920724791
-
Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment
-
Lavin Y., et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 2014, 159:1312-1326.
-
(2014)
Cell
, vol.159
, pp. 1312-1326
-
-
Lavin, Y.1
-
37
-
-
84920724792
-
Environment drives selection and function of enhancers controlling tissue-specific macrophage identities
-
Gosselin D., et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 2014, 159:1327-1340.
-
(2014)
Cell
, vol.159
, pp. 1327-1340
-
-
Gosselin, D.1
-
38
-
-
84900413094
-
Tissue-specific signals control reversible program of localization and functional polarization of macrophages
-
Okabe Y., Medzhitov R. Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell 2014, 157:832-844.
-
(2014)
Cell
, vol.157
, pp. 832-844
-
-
Okabe, Y.1
Medzhitov, R.2
-
39
-
-
58249104981
-
Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis
-
Kohyama M., et al. Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis. Nature 2009, 457:318-321.
-
(2009)
Nature
, vol.457
, pp. 318-321
-
-
Kohyama, M.1
-
40
-
-
80052633284
-
Synaptic pruning by microglia is necessary for normal brain development
-
Paolicelli R.C., et al. Synaptic pruning by microglia is necessary for normal brain development. Science 2011, 333:1456-1458.
-
(2011)
Science
, vol.333
, pp. 1456-1458
-
-
Paolicelli, R.C.1
-
41
-
-
84920940940
-
Pulmonary macrophage transplantation therapy
-
Suzuki T., et al. Pulmonary macrophage transplantation therapy. Nature 2014, 514:450-454.
-
(2014)
Nature
, vol.514
, pp. 450-454
-
-
Suzuki, T.1
-
42
-
-
82555186955
-
Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis
-
Nguyen K.D., et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 2011, 480:104-108.
-
(2011)
Nature
, vol.480
, pp. 104-108
-
-
Nguyen, K.D.1
-
43
-
-
84902094655
-
Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat
-
Qiu Y., et al. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 2014, 157:1292-1308.
-
(2014)
Cell
, vol.157
, pp. 1292-1308
-
-
Qiu, Y.1
-
44
-
-
84878444005
-
+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress
-
+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat. Med. 2013, 19:429-436.
-
(2013)
Nat. Med.
, vol.19
, pp. 429-436
-
-
Chow, A.1
-
45
-
-
84928254121
-
Macrophages retain hematopoietic stem cells in the spleen via VCAM-1
-
Dutta P., et al. Macrophages retain hematopoietic stem cells in the spleen via VCAM-1. J. Exp. Med. 2015, 212:497-512.
-
(2015)
J. Exp. Med.
, vol.212
, pp. 497-512
-
-
Dutta, P.1
-
46
-
-
66749106368
-
Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism
-
Machnik A., et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat. Med. 2009, 15:545-552.
-
(2009)
Nat. Med.
, vol.15
, pp. 545-552
-
-
Machnik, A.1
-
47
-
-
84879616239
-
Immune cells control skin lymphatic electrolyte homeostasis and blood pressure
-
Wiig H., et al. Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J. Clin. Invest. 2013, 123:2803-2815.
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 2803-2815
-
-
Wiig, H.1
-
48
-
-
84885318684
-
Enhanced efferocytosis of apoptotic cardiomyocytes through myeloid-epithelial-reproductive tyrosine kinase links acute inflammation resolution to cardiac repair after infarction
-
Wan E., et al. Enhanced efferocytosis of apoptotic cardiomyocytes through myeloid-epithelial-reproductive tyrosine kinase links acute inflammation resolution to cardiac repair after infarction. Circ. Res. 2013, 113:1004-1012.
-
(2013)
Circ. Res.
, vol.113
, pp. 1004-1012
-
-
Wan, E.1
-
49
-
-
84911409677
-
Macrophages in cardiac homeostasis, injury responses and progenitor cell mobilisation
-
Pinto A.R., et al. Macrophages in cardiac homeostasis, injury responses and progenitor cell mobilisation. Stem Cell Res. 2014, 13:705-714.
-
(2014)
Stem Cell Res.
, vol.13
, pp. 705-714
-
-
Pinto, A.R.1
-
50
-
-
84896799309
-
Macrophages are required for neonatal heart regeneration
-
Aurora A.B., et al. Macrophages are required for neonatal heart regeneration. J. Clin. Invest. 2014, 124:1382-1392.
-
(2014)
J. Clin. Invest.
, vol.124
, pp. 1382-1392
-
-
Aurora, A.B.1
-
51
-
-
84909594606
-
Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart
-
Lavine K.J., et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:16029-16034.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 16029-16034
-
-
Lavine, K.J.1
-
52
-
-
84900331122
-
A proliferative burst during preadolescence establishes the final cardiomyocyte number
-
Naqvi N., et al. A proliferative burst during preadolescence establishes the final cardiomyocyte number. Cell 2014, 157:795-807.
-
(2014)
Cell
, vol.157
, pp. 795-807
-
-
Naqvi, N.1
-
53
-
-
84944881554
-
Myeloid suppressor cells accumulate and regulate blood pressure in hypertension
-
Shah K.H., et al. Myeloid suppressor cells accumulate and regulate blood pressure in hypertension. Circ. Res. 2015, 117:858-869.
-
(2015)
Circ. Res.
, vol.117
, pp. 858-869
-
-
Shah, K.H.1
-
54
-
-
84928594102
-
Macrophages in vascular inflammation - from atherosclerosis to vasculitis
-
Shirai T., et al. Macrophages in vascular inflammation - from atherosclerosis to vasculitis. Autoimmunity 2015, 48:139-151.
-
(2015)
Autoimmunity
, vol.48
, pp. 139-151
-
-
Shirai, T.1
-
55
-
-
84959903923
-
Immune mechanisms in arterial hypertension
-
Published online August 28, 2015
-
Wenzel U., et al. Immune mechanisms in arterial hypertension. J. Am. Soc. Nephrol. 2015, Published online August 28, 2015. 10.1681/ASN. 2015050562.
-
(2015)
J. Am. Soc. Nephrol.
-
-
Wenzel, U.1
-
56
-
-
84940728384
-
M2 macrophage accumulation in the aortic wall during angiotensin II infusion in mice is associated with fibrosis, elastin loss, and elevated blood pressure
-
Moore J.P., et al. M2 macrophage accumulation in the aortic wall during angiotensin II infusion in mice is associated with fibrosis, elastin loss, and elevated blood pressure. Am. J. Physiol. Heart Circ. Physiol. 2015, 309:H906-H917.
-
(2015)
Am. J. Physiol. Heart Circ. Physiol.
, vol.309
, pp. H906-H917
-
-
Moore, J.P.1
-
57
-
-
84872166189
-
Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure
-
Swirski F.K., Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 2013, 339:161-166.
-
(2013)
Science
, vol.339
, pp. 161-166
-
-
Swirski, F.K.1
Nahrendorf, M.2
-
58
-
-
77953350982
-
Monocytes: protagonists of infarct inflammation and repair after myocardial infarction
-
Nahrendorf M., et al. Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 2010, 121:2437-2445.
-
(2010)
Circulation
, vol.121
, pp. 2437-2445
-
-
Nahrendorf, M.1
-
59
-
-
15244363201
-
Chemokines in the ischemic myocardium: from inflammation to fibrosis
-
Frangogiannis N.G. Chemokines in the ischemic myocardium: from inflammation to fibrosis. Inflamm. Res. 2004, 53:585-595.
-
(2004)
Inflamm. Res.
, vol.53
, pp. 585-595
-
-
Frangogiannis, N.G.1
-
60
-
-
36549033197
-
The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions
-
Nahrendorf M., et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 2007, 204:3037-3047.
-
(2007)
J. Exp. Med.
, vol.204
, pp. 3037-3047
-
-
Nahrendorf, M.1
-
61
-
-
20944449211
-
CCL2/monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts
-
Dewald O., et al. CCL2/monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ. Res. 2005, 96:881-889.
-
(2005)
Circ. Res.
, vol.96
, pp. 881-889
-
-
Dewald, O.1
-
62
-
-
84901056045
-
high monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium
-
high monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium. Circ. Res. 2014, 114:1611-1622.
-
(2014)
Circ. Res.
, vol.114
, pp. 1611-1622
-
-
Hilgendorf, I.1
-
63
-
-
84900844706
-
In vivo silencing of the transcription factor IRF5 reprograms the macrophage phenotype and improves infarct healing
-
Courties G., et al. In vivo silencing of the transcription factor IRF5 reprograms the macrophage phenotype and improves infarct healing. J. Am. Coll. Cardiol. 2014, 63:1556-1566.
-
(2014)
J. Am. Coll. Cardiol.
, vol.63
, pp. 1556-1566
-
-
Courties, G.1
-
64
-
-
84922609359
-
Myeloid-derived growth factor (C19orf10) mediates cardiac repair following myocardial infarction
-
Korf-Klingebiel M., et al. Myeloid-derived growth factor (C19orf10) mediates cardiac repair following myocardial infarction. Nat. Med. 2015, 21:140-149.
-
(2015)
Nat. Med.
, vol.21
, pp. 140-149
-
-
Korf-Klingebiel, M.1
-
65
-
-
84923061601
-
Role of innate and adaptive immune mechanisms in cardiac injury and repair
-
Epelman S., et al. Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nat. Rev. Immunol. 2015, 15:117-129.
-
(2015)
Nat. Rev. Immunol.
, vol.15
, pp. 117-129
-
-
Epelman, S.1
-
66
-
-
84930583466
-
Myocardial healing requires Reg3beta-dependent accumulation of macrophages in the ischemic heart
-
Lorchner H., et al. Myocardial healing requires Reg3beta-dependent accumulation of macrophages in the ischemic heart. Nat. Med. 2015, 21:353-362.
-
(2015)
Nat. Med.
, vol.21
, pp. 353-362
-
-
Lorchner, H.1
-
67
-
-
84907543940
-
MTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity
-
Cheng S.C., et al. mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 2014, 345:1250684.
-
(2014)
Science
, vol.345
, pp. 1250684
-
-
Cheng, S.C.1
-
68
-
-
79956080152
-
Trained immunity: a memory for innate host defense
-
Netea M.G., et al. Trained immunity: a memory for innate host defense. Cell Host Microbe 2011, 9:355-361.
-
(2011)
Cell Host Microbe
, vol.9
, pp. 355-361
-
-
Netea, M.G.1
-
69
-
-
84907483941
-
Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity
-
Saeed S., et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 2014, 345:1251086.
-
(2014)
Science
, vol.345
, pp. 1251086
-
-
Saeed, S.1
-
70
-
-
79955535643
-
Macrophages in the pathogenesis of atherosclerosis
-
Moore K.J., Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell 2011, 145:341-355.
-
(2011)
Cell
, vol.145
, pp. 341-355
-
-
Moore, K.J.1
Tabas, I.2
-
71
-
-
84886797808
-
Macrophages in atherosclerosis: a dynamic balance
-
Moore K.J., et al. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol. 2013, 13:709-721.
-
(2013)
Nat. Rev. Immunol.
, vol.13
, pp. 709-721
-
-
Moore, K.J.1
-
72
-
-
84923046255
-
Cholesterol, inflammation and innate immunity
-
Tall A.R., Yvan-Charvet L. Cholesterol, inflammation and innate immunity. Nat. Rev. Immunol. 2015, 15:104-116.
-
(2015)
Nat. Rev. Immunol.
, vol.15
, pp. 104-116
-
-
Tall, A.R.1
Yvan-Charvet, L.2
-
73
-
-
84879569545
-
Immune effector mechanisms implicated in atherosclerosis: from mice to humans
-
Libby P., et al. Immune effector mechanisms implicated in atherosclerosis: from mice to humans. Immunity 2013, 38:1092-1104.
-
(2013)
Immunity
, vol.38
, pp. 1092-1104
-
-
Libby, P.1
-
74
-
-
0037180771
-
Inflammation in atherosclerosis
-
Libby P. Inflammation in atherosclerosis. Nature 2002, 420:868-874.
-
(2002)
Nature
, vol.420
, pp. 868-874
-
-
Libby, P.1
-
75
-
-
33845970192
-
Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata
-
Swirski F.K., et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J. Clin. Invest. 2007, 117:195-205.
-
(2007)
J. Clin. Invest.
, vol.117
, pp. 195-205
-
-
Swirski, F.K.1
-
76
-
-
33845989083
-
Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques
-
Tacke F., et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest. 2007, 117:185-194.
-
(2007)
J. Clin. Invest.
, vol.117
, pp. 185-194
-
-
Tacke, F.1
-
77
-
-
84883800208
-
Local proliferation dominates lesional macrophage accumulation in atherosclerosis
-
Robbins C.S., et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat. Med. 2013, 19:1166-1172.
-
(2013)
Nat. Med.
, vol.19
, pp. 1166-1172
-
-
Robbins, C.S.1
-
78
-
-
72949116358
-
Macrophage death and defective inflammation resolution in atherosclerosis
-
Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat. Rev. Immunol. 2010, 10:36-46.
-
(2010)
Nat. Rev. Immunol.
, vol.10
, pp. 36-46
-
-
Tabas, I.1
-
79
-
-
84855928422
-
The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques
-
van Gils J.M., et al. The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques. Nat. Immunol. 2012, 13:136-143.
-
(2012)
Nat. Immunol.
, vol.13
, pp. 136-143
-
-
van Gils, J.M.1
-
80
-
-
79958715229
-
Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation
-
Jenkins S.J., et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 2011, 332:1284-1288.
-
(2011)
Science
, vol.332
, pp. 1284-1288
-
-
Jenkins, S.J.1
-
81
-
-
33745876256
-
Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease
-
Swirski F.K., et al. Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:10340-10345.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 10340-10345
-
-
Swirski, F.K.1
-
82
-
-
84884352076
-
Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes
-
Jakubzick C., et al. Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity 2013, 39:599-610.
-
(2013)
Immunity
, vol.39
, pp. 599-610
-
-
Jakubzick, C.1
-
83
-
-
68149119072
-
Identification of splenic reservoir monocytes and their deployment to inflammatory sites
-
Swirski F.K., et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 2009, 325:612-616.
-
(2009)
Science
, vol.325
, pp. 612-616
-
-
Swirski, F.K.1
-
84
-
-
84937634493
-
Leukotriene B4-neutrophil elastase axis drives neutrophil reverse transendothelial cell migration in vivo
-
Colom B., et al. Leukotriene B4-neutrophil elastase axis drives neutrophil reverse transendothelial cell migration in vivo. Immunity 2015, 42:1075-1086.
-
(2015)
Immunity
, vol.42
, pp. 1075-1086
-
-
Colom, B.1
-
85
-
-
84912093807
-
Leukocyte migration into inflamed tissues
-
Nourshargh S., Alon R. Leukocyte migration into inflamed tissues. Immunity 2014, 41:694-707.
-
(2014)
Immunity
, vol.41
, pp. 694-707
-
-
Nourshargh, S.1
Alon, R.2
-
86
-
-
80355131976
-
Protective and pathogenic functions of macrophage subsets
-
Murray P.J., Wynn T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 2011, 11:723-737.
-
(2011)
Nat. Rev. Immunol.
, vol.11
, pp. 723-737
-
-
Murray, P.J.1
Wynn, T.A.2
-
87
-
-
84888081111
-
On-site education of VEGF-recruited monocytes improves their performance as angiogenic and arteriogenic accessory cells
-
Avraham-Davidi I., et al. On-site education of VEGF-recruited monocytes improves their performance as angiogenic and arteriogenic accessory cells. J. Exp. Med. 2013, 210:2611-2625.
-
(2013)
J. Exp. Med.
, vol.210
, pp. 2611-2625
-
-
Avraham-Davidi, I.1
|