메뉴 건너뛰기




Volumn 26, Issue 4, 2007, Pages 38-51

Estimating item response theory models using markov chain Monte Carlo methods: An NCME instructional module on

Author keywords

Bayesian estimation; Goodness of fit; Item response theory models; Markov chain Monte Carlo; Model comparison

Indexed keywords


EID: 36148959043     PISSN: 07311745     EISSN: 17453992     Source Type: Journal    
DOI: 10.1111/j.1745-3992.2007.00107.x     Document Type: Article
Times cited : (55)

References (41)
  • 1
    • 0000501656 scopus 로고
    • In. B.N. Petrov. & F. Csáki (. Eds.Proceedings, 2nd International Symposium on Information Theory (. pp.). Budapest: Akadémiai Kiadó.
    • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B.N. Petrov & F. Csáki (Eds. Proceedings, 2nd International Symposium on Information Theory (pp. 267 281). Budapest : Akadémiai Kiadó.
    • (1973) Information Theory and An Extension of the Maximum Likelihood Principle , pp. 267-281
    • Akaike, H.1
  • 2
    • 0001248506 scopus 로고
    • Bayesian estimation of normal ogive item response curves using Gibbs sampling
    • Albert, J.H. (1992). Bayesian estimation of normal ogive item response curves using Gibbs sampling. Journal of Educational Statistics, 17, 251 269.
    • (1992) Journal of Educational Statistics , vol.17 , pp. 251-269
    • Albert, J.H.1
  • 3
    • 0032390589 scopus 로고    scopus 로고
    • An investigation of the item parameter recovery characteristics of a Gibbs sampling approach
    • Baker, F.B. (1998). An investigation of the item parameter recovery characteristics of a Gibbs sampling approach. Applied Psychological Measurement, 22, 153 169.
    • (1998) Applied Psychological Measurement , vol.22 , pp. 153-169
    • Baker, F.B.1
  • 5
    • 0035543525 scopus 로고    scopus 로고
    • MCMC estimation and some model-fit analysis of multidimensional IRT models
    • &
    • Beguin, A.A., & Glas, C.A.W. (2001). MCMC estimation and some model-fit analysis of multidimensional IRT models. Psychometrika, 66, 541 562.
    • (2001) Psychometrika , vol.66 , pp. 541-562
    • Beguin, A.A.1    Glas, C.A.W.2
  • 7
    • 0345149832 scopus 로고    scopus 로고
    • Estimation of compensatory and noncompensatory multidimensional item response models using Markov chain Monte Carlo
    • &
    • Bolt, D.M., & Lall, V.F. (2003). Estimation of compensatory and noncompensatory multidimensional item response models using Markov chain Monte Carlo. Applied Psychological Measurement, 29, 395 414.
    • (2003) Applied Psychological Measurement , vol.29 , pp. 395-414
    • Bolt, D.M.1    Lall, V.F.2
  • 8
    • 0033239554 scopus 로고    scopus 로고
    • A Bayesian random effects model for testlets
    • &
    • Bradlow, E.T., Wainer, H., & Wang, X. (1999). A Bayesian random effects model for testlets. Psychometrika, 64, 153 168.
    • (1999) Psychometrika , vol.64 , pp. 153-168
    • Bradlow, E.T.1    Wainer, H.2    Wang, X.3
  • 9
    • 0003003642 scopus 로고    scopus 로고
    • Generalized linear mixed models
    • In. W.R. Gilks, S. Richardson, & D.J. Spiegelhalter (. Eds. pp.). London: Chapman & Hall.
    • Clayton, D.G. (1997). Generalized linear mixed models. In W.R. Gilks, S. Richardson, & D.J. Spiegelhalter (Eds. Markov chain Monte Carlo in practice (pp. 275 302). London : Chapman & Hall.
    • (1997) Markov Chain Monte Carlo in Practice , pp. 275-302
    • Clayton, D.G.1
  • 11
    • 33646178269 scopus 로고    scopus 로고
    • Markov Chain Monte Carlo estimation of item parameters for the generalized graded unfolding model
    • &
    • De la Torre, J., Stark, S., & Chernyshenko, O. (2006). Markov Chain Monte Carlo estimation of item parameters for the generalized graded unfolding model. Applied Psychological Measurement, 30, 216 232.
    • (2006) Applied Psychological Measurement , vol.30 , pp. 216-232
    • De La Torre, J.1    Stark, S.2    Chernyshenko, O.3
  • 12
    • 0035534930 scopus 로고    scopus 로고
    • Bayesian estimation of multilevel IRT models using Gibbs sampling
    • &
    • Fox, J.-P., & Glas, C.A.W. (2001). Bayesian estimation of multilevel IRT models using Gibbs sampling. Psychometrika, 66, 271 288.
    • (2001) Psychometrika , vol.66 , pp. 271-288
    • Fox, J.-P.1    Glas, C.A.W.2
  • 14
    • 0000079228 scopus 로고
    • Model determination using predictive distributions with implementation via sampling methods
    • & In. J.M. Bernardo, J.O. Berger, A.P. Dawid, & A.F.M. Smith (. Eds. pp.). Oxford, UK: Oxford University Press.
    • Gelfand, A.E., Dey, D.K., & Chang, H. (1992). Model determination using predictive distributions with implementation via sampling methods. In J.M. Bernardo, J.O. Berger, A.P. Dawid, & A.F.M. Smith (Eds. Bayesian statistics (Vol. 4, pp. 147 167). Oxford, UK : Oxford University Press.
    • (1992) Bayesian Statistics , vol.4 , pp. 147-167
    • Gelfand, A.E.1    Dey, D.K.2    Chang, H.3
  • 15
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences (with discussion)
    • &
    • Gelman, A., & Rubin, D.B. (1992). Inference from iterative simulation using multiple sequences (with discussion). Statistical Science, 7, 457 511.
    • (1992) Statistical Science , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.B.2
  • 16
    • 0001032163 scopus 로고
    • Evaluating the accuracy of sampling-based approaches to calculating posterior moments
    • In. J.M. Bernardo, J.O. Berger, A.P. Dawid, & A.F.M. Smith (. Eds. pp.). Oxford, UK: Oxford University Press.
    • Geweke, J. (1992) Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In J.M. Bernardo, J.O. Berger, A.P. Dawid, & A.F.M. Smith (Eds. Bayesian statistics (Vol. 4, pp. 169 193). Oxford, UK : Oxford University Press.
    • (1992) Bayesian Statistics , vol.4 , pp. 169-193
    • Geweke, J.1
  • 17
    • 0000324169 scopus 로고
    • Adaptive rejection sampling for Gibbs sampling
    • &
    • Gilks, W.R., & Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Applied Statistics, 41, 337 348.
    • (1992) Applied Statistics , vol.41 , pp. 337-348
    • Gilks, W.R.1    Wild, P.2
  • 19
    • 0037793361 scopus 로고    scopus 로고
    • A Bayesian approach to person fit analysis in item response theory models
    • &
    • Glas, C. A. W., & Meijer, R. R. (2003). A Bayesian approach to person fit analysis in item response theory models. Applied Psychological Measurement, 27, 217 233.
    • (2003) Applied Psychological Measurement , vol.27 , pp. 217-233
    • Glas, C.A.W.1    Meijer, R.R.2
  • 21
    • 24944435572 scopus 로고    scopus 로고
    • Calibration of polytomous item families using Bayesian hierarchical modeling
    • &
    • Johnson, M.S., & Sinharay, S. (2005). Calibration of polytomous item families using Bayesian hierarchical modeling. Applied Psychological Measurement, 29, 369 400.
    • (2005) Applied Psychological Measurement , vol.29 , pp. 369-400
    • Johnson, M.S.1    Sinharay, S.2
  • 22
    • 0037241832 scopus 로고    scopus 로고
    • A Bayesian method for the detection of item preknowledge in computerized adaptive testing
    • &
    • McLeod, L., Lewis, C, & Thissen, D. (2003). A Bayesian method for the detection of item preknowledge in computerized adaptive testing. Applied Psychological Measurement, 27, 121 137.
    • (2003) Applied Psychological Measurement , vol.27 , pp. 121-137
    • McLeod, L.1    Lewis, C.2    Thissen, D.3
  • 24
    • 1642370803 scopus 로고    scopus 로고
    • Slice sampling
    • Neal, R.M. (2003). Slice sampling. Annals of Statistics, 31, 705 767.
    • (2003) Annals of Statistics , vol.31 , pp. 705-767
    • Neal, R.M.1
  • 25
    • 0033261632 scopus 로고    scopus 로고
    • Applications and extensions of MCMC in IRT: Multiple item types, missing data, and rated responses
    • &
    • Patz, R., & Junker, B. (1999a). Applications and extensions of MCMC in IRT: Multiple item types, missing data, and rated responses. Journal of Educational and Behavioral Statistics, 24, 342 366.
    • (1999) Journal of Educational and Behavioral Statistics , vol.24 , pp. 342-366
    • Patz, R.1    Junker, B.2
  • 26
    • 0033411905 scopus 로고    scopus 로고
    • A straightforward approach to Markov chain Monte Carlo methods for item response models
    • &
    • Patz, R., & Junker, B. (1999b). A straightforward approach to Markov chain Monte Carlo methods for item response models. Journal of Educational and Behavioral Statistics, 24, 146 178.
    • (1999) Journal of Educational and Behavioral Statistics , vol.24 , pp. 146-178
    • Patz, R.1    Junker, B.2
  • 27
    • 0000783674 scopus 로고    scopus 로고
    • Hypothesis testing and model selection
    • In. W.R. Gilks, S. Richardson, & D.J. Spiegelhalter (. Eds. pp.). London: Chapman & Hall.
    • Raftery, A.E. (1996). Hypothesis testing and model selection. In W.R. Gilks, S. Richardson, & D.J. Spiegelhalter (Eds. Markov chain Monte Carlo in practice (pp. 115 130). London : Chapman & Hall.
    • (1996) Markov Chain Monte Carlo in Practice , pp. 115-130
    • Raftery, A.E.1
  • 28
    • 0000759236 scopus 로고
    • How many iterations in the Gibbs sampler?
    • & In. J.M. Bernardo, J.O. Berger, A.P. Dawid, & A.F.M. Smith (. Eds. pp.). Oxford, UK: Oxford University Press.
    • Raftery, A.E., & Lewis, S.M. (1992a). How many iterations in the Gibbs sampler? In J.M. Bernardo, J.O. Berger, A.P. Dawid, & A.F.M. Smith (Eds. Bayesian statistics (Vol. 4, pp. 765 776). Oxford, UK : Oxford University Press.
    • (1992) Bayesian Statistics , vol.4 , pp. 765-776
    • Raftery, A.E.1    Lewis, S.M.2
  • 29
    • 84972518066 scopus 로고
    • One long run with diagnostics: Implementation strategies for Markov chain Monte Carlo
    • &
    • Raftery, A.E., & Lewis, S.M. (1992b). One long run with diagnostics: implementation strategies for Markov chain Monte Carlo. Statistical Science, 7, 493 497.
    • (1992) Statistical Science , vol.7 , pp. 493-497
    • Raftery, A.E.1    Lewis, S.M.2
  • 30
    • 0000599677 scopus 로고    scopus 로고
    • Mixtures of distributions: Inference and estimation
    • In. W.R. Gilks, S. Richardson, & D.J. Spiegelhalter (. Eds. pp.). London: Chapman & Hall.
    • Robert, C.P. (1997). Mixtures of distributions: Inference and estimation. In W.R. Gilks, S. Richardson, & D.J. Spiegelhalter (Eds. Markov chain Monte Carlo in practice (pp. 441 464). London : Chapman & Hall.
    • (1997) Markov Chain Monte Carlo in Practice , pp. 441-464
    • Robert, C.P.1
  • 31
    • 3042842243 scopus 로고    scopus 로고
    • To Bayes or not to Bayes, from whether to when: Applications of Bayesian methodology to modeling
    • &
    • Rupp, A.A., Dey, D.K., & Zumbo, B.D. (2004). To Bayes or not to Bayes, from whether to when: Applications of Bayesian methodology to modeling. Structural Equation Modeling, 11, 424 451.
    • (2004) Structural Equation Modeling , vol.11 , pp. 424-451
    • Rupp, A.A.1    Dey, D.K.2    Zumbo, B.D.3
  • 32
    • 0036289272 scopus 로고    scopus 로고
    • Bayesian estimation and model choice in item response models
    • Sahu, S.K. (2002). Bayesian estimation and model choice in item response models. Journal of Statistical Computation and Simulation, 72, 217 232.
    • (2002) Journal of Statistical Computation and Simulation , vol.72 , pp. 217-232
    • Sahu, S.K.1
  • 33
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwartz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461 464.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwartz, G.1
  • 34
    • 11844261472 scopus 로고    scopus 로고
    • Experiences with Markov chain Monte Carlo convergence assessment in two psychometric examples
    • Sinharay, S. (2004). Experiences with Markov chain Monte Carlo convergence assessment in two psychometric examples. Journal of Educational and Behavioral Statistics, 29, 461 488.
    • (2004) Journal of Educational and Behavioral Statistics , vol.29 , pp. 461-488
    • Sinharay, S.1
  • 35
    • 30344469096 scopus 로고    scopus 로고
    • Assessing fit of unidimensional item response theory models using a Bayesian approach
    • Sinharay, S. (2005). Assessing fit of unidimensional item response theory models using a Bayesian approach. Journal of Educational Measurement, 42, 375 395.
    • (2005) Journal of Educational Measurement , vol.42 , pp. 375-395
    • Sinharay, S.1
  • 40
    • 36148982659 scopus 로고
    • Chicago: Scientific Software.
    • Thissen, D. (1991). MULTILOG 6.0. Chicago : Scientific Software.
    • (1991) MULTILOG 6.0.
    • Thissen, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.