메뉴 건너뛰기




Volumn 6, Issue 2, 1996, Pages 101-111

Accelerating Monte Carlo Markov chain convergence for cumulative-link generalized linear models

Author keywords

Blocking; Collapsing; Data augmentation; Gibbs sampler; Latent data

Indexed keywords


EID: 21344474305     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/BF00162520     Document Type: Article
Times cited : (165)

References (25)
  • 2
  • 5
    • 0001342598 scopus 로고
    • Monte Carlo Bayesian methods for discrete regression models and categorical time series
    • eds. J. M. Bernardo, J. Berger, A. P. Dawid and A. F. M. Smith, Oxford University Press
    • Carlin, B. P. and Polson, N. G. (1992) Monte Carlo Bayesian methods for discrete regression models and categorical time series. In Bayesian Statistics 4 (eds. J. M. Bernardo, J. Berger, A. P. Dawid and A. F. M. Smith), pp. 577-86. Oxford University Press.
    • (1992) Bayesian Statistics , vol.4 , pp. 577-586
    • Carlin, B.P.1    Polson, N.G.2
  • 7
    • 0002276548 scopus 로고    scopus 로고
    • Bayesian tobit modeling of longitudinal ordinal clinical trial compliance data with nonignorable nonresponse
    • Cowles, M. K., Carlin, B. P. and Connett, J. E. (1996) Bayesian tobit modeling of longitudinal ordinal clinical trial compliance data with nonignorable nonresponse. Journal of the American Statistical Association.
    • (1996) Journal of the American Statistical Association
    • Cowles, M.K.1    Carlin, B.P.2    Connett, J.E.3
  • 9
    • 0039644192 scopus 로고
    • Bayesian inference for generalised linear and proportional hazards models via Gibbs sampling
    • Dellaportas, P. and Smith, A. F. M. (1993) Bayesian inference for generalised linear and proportional hazards models via Gibbs sampling. Applied Statistics, 42, 443-59.
    • (1993) Applied Statistics , vol.42 , pp. 443-459
    • Dellaportas, P.1    Smith, A.F.M.2
  • 11
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences (with discussion)
    • Gelman, A. and Rubin, D. B. (1992) Inference from iterative simulation using multiple sequences (with discussion). Statistical Science, 7, 457-511.
    • (1992) Statistical Science , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.B.2
  • 12
    • 0000954353 scopus 로고    scopus 로고
    • Efficient Metropolis jumping rules
    • Eds. J. M. Bernardo, J. Berger, A. P. Dawid and A. F. M. Smith, Oxford University Press
    • Gelman, A., Roberts, G., and Gilks, W. (1996) Efficient Metropolis jumping rules. In Bayesian Statistics 5 (Eds. J. M. Bernardo, J. Berger, A. P. Dawid and A. F. M. Smith), Oxford University Press..
    • (1996) Bayesian Statistics , vol.5
    • Gelman, A.1    Roberts, G.2    Gilks, W.3
  • 14
    • 0001032163 scopus 로고
    • Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments
    • Eds. J. M. Bernardo, J. Berger, A. P. Dawid and A. F. M. Smith, Oxford University Press
    • Geweke, J. (1992) Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In Bayesian Statistics 4 (Eds. J. M. Bernardo, J. Berger, A. P. Dawid and A. F. M. Smith), pp. 169-193. Oxford University Press.
    • (1992) Bayesian Statistics , vol.4 , pp. 169-193
    • Geweke, J.1
  • 15
    • 84972511893 scopus 로고
    • Practical Markov chain Monte Carlo
    • Geyer, C. J. (1992) Practical Markov chain Monte Carlo. Statistical Science, 7, 473-83.
    • (1992) Statistical Science , vol.7 , pp. 473-483
    • Geyer, C.J.1
  • 16
    • 0000324169 scopus 로고
    • Adaptive rejection sampling for Gibbs sampling
    • Gilks, W. R. and Wild, P. (1992) Adaptive rejection sampling for Gibbs sampling. Applied Statistics, 41, 337-48.
    • (1992) Applied Statistics , vol.41 , pp. 337-348
    • Gilks, W.R.1    Wild, P.2
  • 18
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings, W. K. (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 19
    • 0001789822 scopus 로고
    • Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes
    • Liu, J. S., Wong, W. H. and Kong, A. (1994) Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes. Biometrika, 81, 27-40.
    • (1994) Biometrika , vol.81 , pp. 27-40
    • Liu, J.S.1    Wong, W.H.2    Kong, A.3
  • 22
    • 0000759236 scopus 로고
    • How many iterations in the Gibbs sampler?
    • Eds. J. M. Bernardo, J. Berger, A. P. Dawid and A. F. M. Smith, Oxford University Press
    • Raftery, A. E. and Lewis S. (1992) How many iterations in the Gibbs sampler? In Bayesian Statistics 4 (Eds. J. M. Bernardo, J. Berger, A. P. Dawid and A. F. M. Smith), pp. 763-73. Oxford University Press.
    • (1992) Bayesian Statistics , vol.4 , pp. 763-773
    • Raftery, A.E.1    Lewis, S.2
  • 24
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation (with discussion)
    • Tanner, T. A. and Wong, W. H. (1987) The calculation of posterior distributions by data augmentation (with discussion). Journal of the American Statistical Association, 82, 528-50.
    • (1987) Journal of the American Statistical Association , vol.82 , pp. 528-550
    • Tanner, T.A.1    Wong, W.H.2
  • 25
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior distributions
    • Tierney, L. (1994) Markov chains for exploring posterior distributions. Annals of Statistics, 22, 1701-86.
    • (1994) Annals of Statistics , vol.22 , pp. 1701-1786
    • Tierney, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.