메뉴 건너뛰기




Volumn 7, Issue 11, 2015, Pages 15014-15045

Accurate annotation of remote sensing images via active spectral clustering with little expert knowledge

Author keywords

Active clustering; Expert knowledge; Image clustering; Information mining; Remote sensing image annotation

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; BIG DATA; CLUSTER ANALYSIS; DATA MINING; GRAPHIC METHODS; IMAGE ANALYSIS; IMAGE PROCESSING; IMAGE RECONSTRUCTION; REMOTE SENSING;

EID: 84950161713     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs71115014     Document Type: Article
Times cited : (44)

References (59)
  • 3
    • 84920508943 scopus 로고    scopus 로고
    • Automatic analysis and mining of remote sensing big data
    • Li, D.; Zhang, L.; Xia, G.-S. Automatic analysis and mining of remote sensing big data. Acta Geod. Cartogr. Sin. 2014, 43, 1211-1216.
    • (2014) Acta Geod. Cartogr. Sin , vol.43 , pp. 1211-1216
    • Li, D.1    Zhang, L.2    Xia, G.-S.3
  • 4
    • 0025402179 scopus 로고
    • Fuzzy supervised classification of remote sensing images
    • Wang, F. Fuzzy supervised classification of remote sensing images. IEEE Trans. Geos. Remote Sens. 1990, 28, 194-201.
    • (1990) IEEE Trans. Geos. Remote Sens , vol.28 , pp. 194-201
    • Wang, F.1
  • 5
    • 34247466658 scopus 로고    scopus 로고
    • Multiobjective genetic clustering for pixel classification in remote sensing imagery
    • Bandyopadhyay, S.; Maulik, U.; Mukhopadhyay, A. Multiobjective genetic clustering for pixel classification in remote sensing imagery. IEEE Trans. Geos. Remote Sens. 2007, 45, 1506-1511.
    • (2007) IEEE Trans. Geos. Remote Sens , vol.45 , pp. 1506-1511
    • Bandyopadhyay, S.1    Maulik, U.2    Mukhopadhyay, A.3
  • 8
    • 0344972104 scopus 로고    scopus 로고
    • Decision tree classification of land cover from remotely sensed data
    • Friedl, M.; Brodley, C. Decision tree classification of land cover from remotely sensed data. Remote Sens. Environ. 1997, 61, 399-409.
    • (1997) Remote Sens. Environ , vol.61 , pp. 399-409
    • Friedl, M.1    Brodley, C.2
  • 9
    • 82655173888 scopus 로고    scopus 로고
    • Remote sensing image classification based on neural network ensemble algorithm
    • Han, M.; Zhu, X.; Yao, W. Remote sensing image classification based on neural network ensemble algorithm. Neurocomputing 2012, 78, 133-138.
    • (2012) Neurocomputing , vol.78 , pp. 133-138
    • Han, M.1    Zhu, X.2    Yao, W.3
  • 10
    • 84897445480 scopus 로고    scopus 로고
    • Spatial and temporal classification of synthetic satellite imagery: Land cover mapping and accuracy validation
    • Xu, Y.; Huang, B. Spatial and temporal classification of synthetic satellite imagery: Land cover mapping and accuracy validation. Geosp. Inf. Sci. 2014, 17, 1-7.
    • (2014) Geosp. Inf. Sci , vol.17 , pp. 1-7
    • Xu, Y.1    Huang, B.2
  • 11
    • 67651166635 scopus 로고    scopus 로고
    • A novel context-sensitive semisupervised SVM classifier robust to mislabeled training samples
    • Bruzzone, L.; Persello, C. A novel context-sensitive semisupervised SVM classifier robust to mislabeled training samples. IEEE Trans. Geos. Remote Sens. 2009, 47, 2142-2154.
    • (2009) IEEE Trans. Geos. Remote Sens , vol.47 , pp. 2142-2154
    • Bruzzone, L.1    Persello, C.2
  • 13
    • 84867060971 scopus 로고    scopus 로고
    • Semisupervised classification of remote sensing images with active queries
    • Munoz-Mari, J.; Tuia, D.; Camps-Valls, G. Semisupervised classification of remote sensing images with active queries. IEEE Trans. Geos. Remote Sens. 2012, 50, 3751-3763.
    • (2012) IEEE Trans. Geos. Remote Sens , vol.50 , pp. 3751-3763
    • Munoz-Mari, J.1    Tuia, D.2    Camps-Valls, G.3
  • 17
    • 84880361836 scopus 로고    scopus 로고
    • Tile-level annotation of satellite images using multi-level max-margin discriminative random field
    • Hu, F.; Yang, W.; Chen, J.; Sun, H. Tile-level annotation of satellite images using multi-level max-margin discriminative random field. Remote Sens. 2013, 5, 2275-2291.
    • (2013) Remote Sens , vol.5 , pp. 2275-2291
    • Hu, F.1    Yang, W.2    Chen, J.3    Sun, H.4
  • 18
    • 85027931914 scopus 로고    scopus 로고
    • Learning high-level features for satellite image classification with limited labeled samples
    • Yang, W.; Yin, X.; Xia, G.-S. Learning high-level features for satellite image classification with limited labeled samples. IEEE Trans. Geos. Remote Sens. 2015, 53, 4472-4482.
    • (2015) IEEE Trans. Geos. Remote Sens , vol.53 , pp. 4472-4482
    • Yang, W.1    Yin, X.2    Xia, G.-S.3
  • 19
    • 85027929099 scopus 로고    scopus 로고
    • Unsupervised feature learning via spectral clustering of multidimensional patches for remotely sensed scene classification
    • Hu, F.; Xia, G.-S.; Wang, Z.; Huang, X.; Zhang, L.; Sun, H. Unsupervised feature learning via spectral clustering of multidimensional patches for remotely sensed scene classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2015-2030.
    • (2015) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens , vol.8 , pp. 2015-2030
    • Hu, F.1    Xia, G.-S.2    Wang, Z.3    Huang, X.4    Zhang, L.5    Sun, H.6
  • 20
    • 75449091209 scopus 로고    scopus 로고
    • Semantic annotation of satellite images using latent Dirichlet allocation
    • Liénou, M.; Maître, H.; Datcu, M. Semantic annotation of satellite images using latent Dirichlet allocation. IEEE Geos. Remote Sens. Lett. 2010, 7, 28-32.
    • (2010) IEEE Geos. Remote Sens. Lett , vol.7 , pp. 28-32
    • Liénou, M.1    Maître, H.2    Datcu, M.3
  • 21
    • 80053115195 scopus 로고    scopus 로고
    • Unsupervised remote sensing image classification using an artificial immune network
    • Zhong, Y.; Zhang, L.; Gong, W. Unsupervised remote sensing image classification using an artificial immune network. Int. J. Remote Sens. 2011, 32, 5461-5483.
    • (2011) Int. J. Remote Sens , vol.32 , pp. 5461-5483
    • Zhong, Y.1    Zhang, L.2    Gong, W.3
  • 23
    • 33747610735 scopus 로고    scopus 로고
    • Training set size requirements for the classification of a specific class
    • Foody, G.M.; Mathur, A.; Sanchez-Hernandez, C.; Boyd, D.S. Training set size requirements for the classification of a specific class. Remote Sens. Environ. 2006, 104, 1-14.
    • (2006) Remote Sens. Environ , vol.104 , pp. 1-14
    • Foody, G.M.1    Mathur, A.2    Sanchez-Hernandez, C.3    Boyd, D.S.4
  • 24
    • 79957456032 scopus 로고    scopus 로고
    • A survey of active learning algorithms for supervised remote sensing image classification
    • Tuia, D.; Volpi, M.; Copa, L.; Kanevski, M.; Munoz-Mari, J. A survey of active learning algorithms for supervised remote sensing image classification. IEEE J. Sel. Top. Signal Proces. 2011, 5, 606-617.
    • (2011) IEEE J. Sel. Top. Signal Proces , vol.5 , pp. 606-617
    • Tuia, D.1    Volpi, M.2    Copa, L.3    Kanevski, M.4    Munoz-Mari, J.5
  • 25
    • 84927670473 scopus 로고    scopus 로고
    • Spatial coherence-based batch-mode active learning for remote sensing image classification
    • Shi, Q.; Du, B.; Zhang, L. Spatial coherence-based batch-mode active learning for remote sensing image classification. IEEE Trans. Image Proces. 2015, 24, 2037-2050.
    • (2015) IEEE Trans. Image Proces , vol.24 , pp. 2037-2050
    • Shi, Q.1    Du, B.2    Zhang, L.3
  • 26
    • 84896833622 scopus 로고    scopus 로고
    • Patch-based active learning (PtAl) for spectral-spatial classification on hyperspectral data
    • Xu, J.; Hang, R.; Liu, Q. Patch-based active learning (PtAl) for spectral-spatial classification on hyperspectral data. Int. J. Remote Sens. 2014, 35, 1846-1875.
    • (2014) Int. J. Remote Sens , vol.35 , pp. 1846-1875
    • Xu, J.1    Hang, R.2    Liu, Q.3
  • 28
    • 84860338492 scopus 로고    scopus 로고
    • Detection of land-cover transitions in multitemporal remote sensing images with active-learning-based compound classification
    • Demir, B.; Bovolo, F.; Bruzzone, L. Detection of land-cover transitions in multitemporal remote sensing images with active-learning-based compound classification. IEEE Trans. Geos. Remote Sens. 2012, 50, 1930-1941.
    • (2012) IEEE Trans. Geos. Remote Sens , vol.50 , pp. 1930-1941
    • Demir, B.1    Bovolo, F.2    Bruzzone, L.3
  • 29
    • 84857046663 scopus 로고    scopus 로고
    • Remote sensing image segmentation by active queries
    • Tuia, D.; Munoz-Mari, J.; Camps-Valls, G. Remote sensing image segmentation by active queries. Pattern Recogn. 2012, 45, 2180-2192.
    • (2012) Pattern Recogn , vol.45 , pp. 2180-2192
    • Tuia, D.1    Munoz-Mari, J.2    Camps-Valls, G.3
  • 30
    • 84921031076 scopus 로고    scopus 로고
    • A novel active learning method in relevance feedback for content-based remote sensing image retrieval
    • Demir, B.; Bruzzone, L. A novel active learning method in relevance feedback for content-based remote sensing image retrieval. IEEE Trans. Geos. Remote Sens. 2015, 53, 2323-2334.
    • (2015) IEEE Trans. Geos. Remote Sens , vol.53 , pp. 2323-2334
    • Demir, B.1    Bruzzone, L.2
  • 32
    • 79952041537 scopus 로고    scopus 로고
    • Batch-mode active-learning methods for the interactive classification of remote sensing images
    • Demir, B.; Persello, C.; Bruzzone, L. Batch-mode active-learning methods for the interactive classification of remote sensing images. IEEE Trans. Geos. Remote Sens. 2011, 49, 1014-1031.
    • (2011) IEEE Trans. Geos. Remote Sens , vol.49 , pp. 1014-1031
    • Demir, B.1    Persello, C.2    Bruzzone, L.3
  • 33
    • 85027937532 scopus 로고    scopus 로고
    • Active learning with Gaussian process classifier for hyperspectral image classification
    • Sun, S.J.; Zhong, P.; Xiao, H.T.; Wang, R.S. Active learning with Gaussian process classifier for hyperspectral image classification. IEEE Trans. Geos. Remote Sens. 2015, 53, 1746-1760.
    • (2015) IEEE Trans. Geos. Remote Sens , vol.53 , pp. 1746-1760
    • Sun, S.J.1    Zhong, P.2    Xiao, H.T.3    Wang, R.S.4
  • 35
    • 84887449224 scopus 로고    scopus 로고
    • Spectral active clustering via purification of the k-nearest neighbor graph
    • Lisbon, Portugal, 21-23 July
    • Xiong, C.; Johnson, D.; Corso, J.J. Spectral active clustering via purification of the k-nearest neighbor graph. In Proceedings of European Conference on Data Mining, Lisbon, Portugal, 21-23 July 2012.
    • (2012) Proceedings of European Conference on Data Mining
    • Xiong, C.1    Johnson, D.2    Corso, J.J.3
  • 37
    • 84900856144 scopus 로고    scopus 로고
    • Active image clustering with pairwise constraints from humans
    • Biswas, A.; Jacobs, D. Active image clustering with pairwise constraints from humans. Int. J. Comput. Vis. 2014, 108, 133-147.
    • (2014) Int. J. Comput. Vis , vol.108 , pp. 133-147
    • Biswas, A.1    Jacobs, D.2
  • 40
    • 85158080410 scopus 로고    scopus 로고
    • Clustering with Instance-Level Constraints
    • Austin, TX, USA, 30 July-3 August
    • Wagstaff, K.; Cardie, C. Clustering with Instance-Level Constraints. In Proceedings of AAAI-00, Austin, TX, USA, 30 July-3 August 2000; pp. 1097-1097.
    • (2000) Proceedings of AAAI-00 , pp. 1097-1097
    • Wagstaff, K.1    Cardie, C.2
  • 41
    • 9444294778 scopus 로고    scopus 로고
    • From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering
    • Sydney, Australia, 8-12 July
    • Klein, D.; Kamvar, S.D.; Manning, C.D. From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering. In Proceedings of the 19th International Conference on Machine Learning, Sydney, Australia, 8-12 July 2002.
    • (2002) Proceedings of the 19th International Conference on Machine Learning
    • Klein, D.1    Kamvar, S.D.2    Manning, C.D.3
  • 44
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • Von Luxburg, U. A tutorial on spectral clustering. Stat. Comput. 2007, 17, 395-416.
    • (2007) Stat. Comput , vol.17 , pp. 395-416
    • Von Luxburg, U.1
  • 45
    • 0041875229 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • Vancouver, BC, Canada, 3-8 December
    • Ng, A.Y.; Jordan, M.I.; Weiss, Y. On spectral clustering: Analysis and an algorithm. In Proceedings of NIPS, Vancouver, BC, Canada, 3-8 December 2001; pp. 849-856.
    • (2001) Proceedings of NIPS , pp. 849-856
    • Ng, A.Y.1    Jordan, M.I.2    Weiss, Y.3
  • 46
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Lowe, D. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91-110.
    • (2004) Int. J. Comput. Vis , vol.60 , pp. 91-110
    • Lowe, D.1
  • 49
    • 84893656343 scopus 로고    scopus 로고
    • Accurate junction detection and characterization in natural images
    • Xia, G.-S.; Delon, J.; Gousseau, Y. Accurate junction detection and characterization in natural images. Int. J. Comput. Vis. 2014, 106, 31-56.
    • (2014) Int. J. Comput. Vis , vol.106 , pp. 31-56
    • Xia, G.-S.1    Delon, J.2    Gousseau, Y.3
  • 50
    • 84894258625 scopus 로고    scopus 로고
    • A perception-inspired building index for automatic built-up area detection in high-resolution satellite images
    • Melbourne, Australia, 21-26 July
    • Liu, G.; Xia, G.-S.; Huang, X.; Yang, W.; Zhang, L. A perception-inspired building index for automatic built-up area detection in high-resolution satellite images. In Proceedings of Geoscience and Remote Sensing Symposium, Melbourne, Australia, 21-26 July 2013; pp. 3132-3135.
    • (2013) Proceedings of Geoscience and Remote Sensing Symposium , pp. 3132-3135
    • Liu, G.1    Xia, G.-S.2    Huang, X.3    Yang, W.4    Zhang, L.5
  • 57
    • 80053369934 scopus 로고    scopus 로고
    • V-measure: A conditional entropy-based external cluster evaluation measure
    • Rosenberg, A.; Hirschberg, J. V-measure: A conditional entropy-based external cluster evaluation measure. EMNLP-CoNLL ACL 2007, 7, 410-420.
    • (2007) EMNLP-CoNLL ACL , vol.7 , pp. 410-420
    • Rosenberg, A.1    Hirschberg, J.2
  • 58
    • 77953203541 scopus 로고    scopus 로고
    • Constrained clustering by spectral kernel learning
    • Kyoto, Japan, 29 September-2 October
    • Li, Z.; Liu, J. Constrained clustering by spectral kernel learning. In Proceedings of International Conference on Computer Vision, Kyoto, Japan, 29 September-2 October 2009; pp. 421-427.
    • (2009) Proceedings of International Conference on Computer Vision , pp. 421-427
    • Li, Z.1    Liu, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.