-
5
-
-
77949522811
-
Why does unsupervised pre-training help deep learning?
-
Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and Samy Bengio. Why does unsupervised pre-training help deep learning? Journal of Machine Learning Research (JMLR), 11:625-660, 2010.
-
(2010)
Journal of Machine Learning Research (JMLR)
, vol.11
, pp. 625-660
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Manzagol, P.-A.4
Vincent, P.5
Bengio, S.6
-
6
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
July
-
G E Hinton and R R Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, July 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
7
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. E. Hinton, S. Osindero, and Y. W. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18:1527-1554, 2006.
-
(2006)
Neural Computation
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.W.3
-
8
-
-
34547967782
-
An empirical evaluation of deep architectures on problems with many factors of variation
-
Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Bengio. An empirical evaluation of deep architectures on problems with many factors of variation. In International Conference on Machine learning (ICML), 2007.
-
(2007)
International Conference on Machine Learning (ICML)
-
-
Larochelle, H.1
Erhan, D.2
Courville, A.3
Bergstra, J.4
Bengio, Y.5
-
9
-
-
85156260506
-
Fast sparse Gaussian process methods: The informative vector machine
-
Suzanna Becker, Sebastian Thrun, and Klaus Obermayer, editors
-
Neil D. Lawrence, Matthias Seeger, and Ralf Herbrich. Fast sparse Gaussian process methods: the informative vector machine. In Suzanna Becker, Sebastian Thrun, and Klaus Obermayer, editors, Advances in Neural Information Processing Systems (NIPS), pages 609-616, 2002.
-
(2002)
Advances in Neural Information Processing Systems (NIPS)
, pp. 609-616
-
-
Lawrence, N.D.1
Seeger, M.2
Herbrich, R.3
-
12
-
-
85048514667
-
The generalized FITC approximation
-
John C. Platt, Daphne Koller, Yoram Singer, and Sam T. Roweis, editors
-
Andrew Naish-Guzman and Sean B. Holden. The generalized FITC approximation. In John C. Platt, Daphne Koller, Yoram Singer, and Sam T. Roweis, editors, Advances in Neural Information Processing Systems (NIPS), 2007.
-
(2007)
Advances in Neural Information Processing Systems (NIPS)
-
-
Naish-Guzman, A.1
Holden, S.B.2
-
17
-
-
84937442245
-
Using deep belief nets to learn covariance kernels for Gaussian processes
-
John C. Platt, Daphne Koller, Yoram Singer, and Sam T. Roweis, editors
-
Ruslan Salakhutdinov and Geoffrey E. Hinton. Using deep belief nets to learn covariance kernels for Gaussian processes. In John C. Platt, Daphne Koller, Yoram Singer, and Sam T. Roweis, editors, Advances in Neural Information Processing Systems (NIPS), 2007.
-
(2007)
Advances in Neural Information Processing Systems (NIPS)
-
-
Salakhutdinov, R.1
Hinton, G.E.2
-
19
-
-
12444291490
-
Gaussian processes for machine learning
-
Matthias Seeger. Gaussian processes for machine learning. International Journal of Neural Systems., 14(2):69-106, 2004.
-
(2004)
International Journal of Neural Systems
, vol.14
, Issue.2
, pp. 69-106
-
-
Seeger, M.1
-
20
-
-
0003275056
-
Sparse greedy Gaussian process regression
-
Todd K. Leen, Thomas G. Dietterich, and Volker Tresp, editors
-
Alex J. Smola and Peter L. Bartlett. Sparse greedy Gaussian process regression. In Todd K. Leen, Thomas G. Dietterich, and Volker Tresp, editors, Advances in Neural Information Processing Systems (NIPS), pages 619-625, 2000.
-
(2000)
Advances in Neural Information Processing Systems (NIPS)
, pp. 619-625
-
-
Smola, A.J.1
Bartlett, P.L.2
|