메뉴 건너뛰기




Volumn 35, Issue , 2014, Pages 57-84

Action of Strigolactones in Plants

Author keywords

Arabidopsis; Plant hormone; Rice; Shoot branching; Signaling; Strigolactones

Indexed keywords

ARABIDOPSIS;

EID: 84907985326     PISSN: 18746047     EISSN: None     Source Type: Book Series    
DOI: 10.1016/B978-0-12-801922-1.00003-8     Document Type: Chapter
Times cited : (15)

References (109)
  • 1
    • 67649511007 scopus 로고    scopus 로고
    • Recent advances and emerging trends in plant hormone signalling
    • Santner A., Estelle M. Recent advances and emerging trends in plant hormone signalling. Nature 2009, 459:1071-1078.
    • (2009) Nature , vol.459 , pp. 1071-1078
    • Santner, A.1    Estelle, M.2
  • 2
    • 0000502250 scopus 로고
    • Germination of witchweed (Striga lutea Lour.): Isolation and properties of a potent stimulant
    • Cook C.E., et al. Germination of witchweed (Striga lutea Lour.): Isolation and properties of a potent stimulant. Science 1966, 154:1189-1190.
    • (1966) Science , vol.154 , pp. 1189-1190
    • Cook, C.E.1
  • 3
    • 20444471142 scopus 로고    scopus 로고
    • Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi
    • Akiyama K., et al. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 2005, 435:824-827.
    • (2005) Nature , vol.435 , pp. 824-827
    • Akiyama, K.1
  • 4
    • 51649096075 scopus 로고    scopus 로고
    • Strigolactone inhibition of shoot branching
    • Gomez-Roldan V., et al. Strigolactone inhibition of shoot branching. Nature 2008, 455:189-194.
    • (2008) Nature , vol.455 , pp. 189-194
    • Gomez-Roldan, V.1
  • 5
    • 51649112342 scopus 로고    scopus 로고
    • Inhibition of shoot branching by new terpenoid plant hormones
    • Umehara M., et al. Inhibition of shoot branching by new terpenoid plant hormones. Nature 2008, 455:195-200.
    • (2008) Nature , vol.455 , pp. 195-200
    • Umehara, M.1
  • 6
    • 84875753226 scopus 로고    scopus 로고
    • Diverse roles of strigolactones in plant development
    • Brewer P.B., et al. Diverse roles of strigolactones in plant development. Mol. Plant 2013, 6:18-28.
    • (2013) Mol. Plant , vol.6 , pp. 18-28
    • Brewer, P.B.1
  • 7
    • 84873128093 scopus 로고    scopus 로고
    • The biology of strigolactones
    • Ruyter-Spira C., et al. The biology of strigolactones. Trends Plant Sci. 2013, 18:72-83.
    • (2013) Trends Plant Sci. , vol.18 , pp. 72-83
    • Ruyter-Spira, C.1
  • 8
    • 0036336159 scopus 로고    scopus 로고
    • MAX1 and MAX2 control shoot lateral branching in Arabidopsis
    • Stirnberg P., et al. MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 2002, 129:1131-1141.
    • (2002) Development , vol.129 , pp. 1131-1141
    • Stirnberg, P.1
  • 9
    • 0038722744 scopus 로고    scopus 로고
    • MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea
    • Sorefan K., et al. MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev. 2003, 17:1469-1474.
    • (2003) Genes Dev. , vol.17 , pp. 1469-1474
    • Sorefan, K.1
  • 10
    • 3342920134 scopus 로고    scopus 로고
    • MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule
    • Booker J., et al. MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr. Biol. 2004, 14:1232-1238.
    • (2004) Curr. Biol. , vol.14 , pp. 1232-1238
    • Booker, J.1
  • 11
    • 20044371180 scopus 로고    scopus 로고
    • MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone
    • Booker J., et al. MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev. Cell 2005, 8:443-449.
    • (2005) Dev. Cell , vol.8 , pp. 443-449
    • Booker, J.1
  • 12
    • 33947682757 scopus 로고    scopus 로고
    • MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching
    • Stirnberg P., et al. MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J. 2007, 50:80-94.
    • (2007) Plant J. , vol.50 , pp. 80-94
    • Stirnberg, P.1
  • 13
    • 84863676736 scopus 로고    scopus 로고
    • The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones
    • Waters M.T., et al. The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones. Plant Physiol. 2012, 159:1073-1085.
    • (2012) Plant Physiol. , vol.159 , pp. 1073-1085
    • Waters, M.T.1
  • 14
    • 84863230556 scopus 로고    scopus 로고
    • Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis
    • Waters M.T., et al. Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development 2012, 139:1285-1295.
    • (2012) Development , vol.139 , pp. 1285-1295
    • Waters, M.T.1
  • 15
    • 14644409769 scopus 로고    scopus 로고
    • Suppression of tiller bud activity in tillering dwarf mutants of rice
    • Ishikawa S., et al. Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol. 2005, 46:79-86.
    • (2005) Plant Cell Physiol. , vol.46 , pp. 79-86
    • Ishikawa, S.1
  • 16
    • 33751007029 scopus 로고    scopus 로고
    • The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds
    • Zou J., et al. The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J. 2006, 48:687-698.
    • (2006) Plant J. , vol.48 , pp. 687-698
    • Zou, J.1
  • 17
    • 34548502219 scopus 로고    scopus 로고
    • DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice
    • Arite T., et al. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J. 2007, 51:1019-1029.
    • (2007) Plant J. , vol.51 , pp. 1019-1029
    • Arite, T.1
  • 18
    • 68949130180 scopus 로고    scopus 로고
    • D14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers
    • Arite T., et al. d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol. 2009, 50:1416-1424.
    • (2009) Plant Cell Physiol. , vol.50 , pp. 1416-1424
    • Arite, T.1
  • 19
    • 33751071837 scopus 로고    scopus 로고
    • Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals
    • Johnson X., et al. Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiol. 2006, 142:1014-1026.
    • (2006) Plant Physiol. , vol.142 , pp. 1014-1026
    • Johnson, X.1
  • 20
    • 18144377299 scopus 로고    scopus 로고
    • The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development
    • Snowden K.C., et al. The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. Plant Cell 2005, 17:746-759.
    • (2005) Plant Cell , vol.17 , pp. 746-759
    • Snowden, K.C.1
  • 21
    • 84868514386 scopus 로고    scopus 로고
    • DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone
    • Hamiaux C., et al. DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr. Biol. 2012, 22:2032-2036.
    • (2012) Curr. Biol. , vol.22 , pp. 2032-2036
    • Hamiaux, C.1
  • 22
    • 34247218101 scopus 로고    scopus 로고
    • Analysis of the DECREASED APICAL DOMINANCE genes of petunia in the control of axillary branching
    • Simons J.L., et al. Analysis of the DECREASED APICAL DOMINANCE genes of petunia in the control of axillary branching. Plant Physiol. 2007, 143:697-706.
    • (2007) Plant Physiol. , vol.143 , pp. 697-706
    • Simons, J.L.1
  • 23
    • 67651115565 scopus 로고    scopus 로고
    • DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth
    • Lin H., et al. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 2009, 21:1512-1525.
    • (2009) Plant Cell , vol.21 , pp. 1512-1525
    • Lin, H.1
  • 25
    • 84858301666 scopus 로고    scopus 로고
    • The path from β-carotene to carlactone, a strigolactone-like plant hormone
    • Alder A., et al. The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 2012, 335:1348-1351.
    • (2012) Science , vol.335 , pp. 1348-1351
    • Alder, A.1
  • 26
    • 84893422174 scopus 로고    scopus 로고
    • Carlactone is an endogenous biosynthetic precursor for strigolactones
    • Seto Y., et al. Carlactone is an endogenous biosynthetic precursor for strigolactones. Proc. Natl. Acad. Sci. U.S.A 2014, 111:1640-1645.
    • (2014) Proc. Natl. Acad. Sci. U.S.A , vol.111 , pp. 1640-1645
    • Seto, Y.1
  • 27
    • 84876326621 scopus 로고    scopus 로고
    • A dual role of strigolactones in phosphate acquisition and utilization in plants
    • Czarnecki O., et al. A dual role of strigolactones in phosphate acquisition and utilization in plants. Int. J. Mol. Sci. 2013, 14:7681-7701.
    • (2013) Int. J. Mol. Sci. , vol.14 , pp. 7681-7701
    • Czarnecki, O.1
  • 28
    • 84858291479 scopus 로고    scopus 로고
    • A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching
    • Kretzschmar T., et al. A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 2012, 483:341-344.
    • (2012) Nature , vol.483 , pp. 341-344
    • Kretzschmar, T.1
  • 29
    • 79551702315 scopus 로고    scopus 로고
    • Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis
    • Kohlen W., et al. Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol. 2011, 155:974-987.
    • (2011) Plant Physiol. , vol.155 , pp. 974-987
    • Kohlen, W.1
  • 30
    • 34948831063 scopus 로고    scopus 로고
    • Rice tillering dwarf mutant dwarf3 has increased leaf longevity during darkness-induced senescence or hydrogen peroxide-induced cell death
    • Yan H., et al. Rice tillering dwarf mutant dwarf3 has increased leaf longevity during darkness-induced senescence or hydrogen peroxide-induced cell death. Genes Genet. Syst. 2007, 82:361-366.
    • (2007) Genes Genet. Syst. , vol.82 , pp. 361-366
    • Yan, H.1
  • 31
    • 84890449326 scopus 로고    scopus 로고
    • DWARF 53 acts as a repressor of strigolactone signalling in rice
    • Jiang L., et al. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 2013, 504:401-405.
    • (2013) Nature , vol.504 , pp. 401-405
    • Jiang, L.1
  • 32
    • 84890492360 scopus 로고    scopus 로고
    • D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling
    • Zhou F., et al. D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature 2013, 504:406-410.
    • (2013) Nature , vol.504 , pp. 406-410
    • Zhou, F.1
  • 33
    • 0037143725 scopus 로고    scopus 로고
    • The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis
    • Gagne J.M., et al. The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A 2002, 99:11519-11524.
    • (2002) Proc. Natl. Acad. Sci. U.S.A , vol.99 , pp. 11519-11524
    • Gagne, J.M.1
  • 34
    • 19544386804 scopus 로고    scopus 로고
    • The Arabidopsis F-box protein TIR1 is an auxin receptor
    • Kepinski S., Leyser O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 2005, 435:446-451.
    • (2005) Nature , vol.435 , pp. 446-451
    • Kepinski, S.1    Leyser, O.2
  • 35
    • 19544379019 scopus 로고    scopus 로고
    • The F-box protein TIR1 is an auxin receptor
    • Dharmasiri N., et al. The F-box protein TIR1 is an auxin receptor. Nature 2005, 435:441-445.
    • (2005) Nature , vol.435 , pp. 441-445
    • Dharmasiri, N.1
  • 36
    • 70349667440 scopus 로고    scopus 로고
    • The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor
    • Yan J., et al. The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 2009, 21:2220-2236.
    • (2009) Plant Cell , vol.21 , pp. 2220-2236
    • Yan, J.1
  • 37
    • 84902477596 scopus 로고    scopus 로고
    • Dwarf3 participates in an SCF complex and associates with Dwarf14 to suppress rice shoot branching
    • Zhao J., et al. Dwarf3 participates in an SCF complex and associates with Dwarf14 to suppress rice shoot branching. Plant Cell Physiol. 2014, 55:1096-1109.
    • (2014) Plant Cell Physiol. , vol.55 , pp. 1096-1109
    • Zhao, J.1
  • 38
    • 0034867567 scopus 로고    scopus 로고
    • ORE9, an F-box protein that regulates leaf senescence in Arabidopsis
    • Woo H.R., et al. ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell 2001, 13:1779-1790.
    • (2001) Plant Cell , vol.13 , pp. 1779-1790
    • Woo, H.R.1
  • 39
    • 37249035640 scopus 로고    scopus 로고
    • The F-box protein MAX2 functions as a positive regulator of photomorphogenesis in Arabidopsis
    • Shen H., et al. The F-box protein MAX2 functions as a positive regulator of photomorphogenesis in Arabidopsis. Plant Physiol. 2007, 145:1471-1483.
    • (2007) Plant Physiol. , vol.145 , pp. 1471-1483
    • Shen, H.1
  • 40
    • 79957699893 scopus 로고    scopus 로고
    • F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana
    • Nelson D.C., et al. F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 2011, 108:8897-8902.
    • (2011) Proc. Natl. Acad. Sci. U. S. A. , vol.108 , pp. 8897-8902
    • Nelson, D.C.1
  • 41
    • 84891764933 scopus 로고    scopus 로고
    • Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis
    • Bu Q., et al. Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis. Plant Physiol. 2014, 164:424-439.
    • (2014) Plant Physiol. , vol.164 , pp. 424-439
    • Bu, Q.1
  • 42
    • 84892589903 scopus 로고    scopus 로고
    • Positive regulatory role of strigolactone in plant responses to drought and salt stress
    • Ha C.V., et al. Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc. Natl. Acad. Sci. U.S.A 2014, 111:851-856.
    • (2014) Proc. Natl. Acad. Sci. U.S.A , vol.111 , pp. 851-856
    • Ha, C.V.1
  • 43
    • 84896546291 scopus 로고    scopus 로고
    • Striga hermonthica MAX2 restores branching but not the very low fluence response in the Arabidopsis thaliana max2 mutant
    • Liu Q., et al. Striga hermonthica MAX2 restores branching but not the very low fluence response in the Arabidopsis thaliana max2 mutant. New Phytol. 2014, 202:531-541.
    • (2014) New Phytol. , vol.202 , pp. 531-541
    • Liu, Q.1
  • 44
    • 69249209640 scopus 로고    scopus 로고
    • Identification and characterization of HTD2: A novel gene negatively regulating tiller bud outgrowth in rice
    • Liu W., et al. Identification and characterization of HTD2: A novel gene negatively regulating tiller bud outgrowth in rice. Planta 2009, 230:649-658.
    • (2009) Planta , vol.230 , pp. 649-658
    • Liu, W.1
  • 45
    • 69149104126 scopus 로고    scopus 로고
    • Dwarf 88, a novel putative esterase gene affecting architecture of rice plant
    • Gao Z., et al. Dwarf 88, a novel putative esterase gene affecting architecture of rice plant. Plant Mol. Biol. 2009, 71:265-276.
    • (2009) Plant Mol. Biol. , vol.71 , pp. 265-276
    • Gao, Z.1
  • 46
    • 84886242440 scopus 로고    scopus 로고
    • Molecular mechanism of strigolactone perception by DWARF14
    • Nakamura H., et al. Molecular mechanism of strigolactone perception by DWARF14. Nat. Commun. 2013, 4:2613.
    • (2013) Nat. Commun. , vol.4 , pp. 2613
    • Nakamura, H.1
  • 47
    • 84874661987 scopus 로고    scopus 로고
    • Crystal structures of two phytohormone signal-transducing α/β hydrolases: Karrikin-signaling KAI2 and strigolactone-signaling DWARF14
    • Zhao L.H., et al. Crystal structures of two phytohormone signal-transducing α/β hydrolases: Karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Res. 2013, 23:436-439.
    • (2013) Cell Res. , vol.23 , pp. 436-439
    • Zhao, L.H.1
  • 48
    • 84873058168 scopus 로고    scopus 로고
    • Structures of D14 and D14L in the strigolactone and karrikin signaling pathways
    • Kagiyama M., et al. Structures of D14 and D14L in the strigolactone and karrikin signaling pathways. Genes Cells 2013, 18:147-160.
    • (2013) Genes Cells , vol.18 , pp. 147-160
    • Kagiyama, M.1
  • 49
    • 84868517378 scopus 로고    scopus 로고
    • Strigolactones: Destruction-dependent perception?
    • Smith S.M., Waters M.T. Strigolactones: Destruction-dependent perception?. Curr. Biol. 2012, 22:R924-R927.
    • (2012) Curr. Biol. , vol.22 , pp. R924-R927
    • Smith, S.M.1    Waters, M.T.2
  • 50
    • 84884905503 scopus 로고    scopus 로고
    • Carlactone-independent seedling morphogenesis in Arabidopsis
    • Scaffidi A., et al. Carlactone-independent seedling morphogenesis in Arabidopsis. Plant J. 2013, 76:1-9.
    • (2013) Plant J. , vol.76 , pp. 1-9
    • Scaffidi, A.1
  • 51
    • 84883230977 scopus 로고    scopus 로고
    • SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in Arabidopsis
    • Stanga J.P., et al. SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in Arabidopsis. Plant Physiol. 2013, 163:318-330.
    • (2013) Plant Physiol. , vol.163 , pp. 318-330
    • Stanga, J.P.1
  • 52
    • 84906068442 scopus 로고    scopus 로고
    • The karrikin response system of Arabidopsis
    • Waters M.T., et al. The karrikin response system of Arabidopsis. Plant J. 2014, 10.1111/tpj.12430.
    • (2014) Plant J.
    • Waters, M.T.1
  • 53
    • 84877857613 scopus 로고    scopus 로고
    • Smoke-derived karrikin perception by the α/β-hydrolase KAI2 from Arabidopsis
    • Guo Y., et al. Smoke-derived karrikin perception by the α/β-hydrolase KAI2 from Arabidopsis. Proc. Natl. Acad. Sci. U.S.A 2013, 110:8284-8289.
    • (2013) Proc. Natl. Acad. Sci. U.S.A , vol.110 , pp. 8284-8289
    • Guo, Y.1
  • 54
    • 84906065976 scopus 로고    scopus 로고
    • Strigolactones and the control of plant development: Lessons from shoot branching
    • Waldie T., et al. Strigolactones and the control of plant development: Lessons from shoot branching. Plant J. 2014, 10.1111/tpj.12488.
    • (2014) Plant J.
    • Waldie, T.1
  • 55
    • 84885195468 scopus 로고    scopus 로고
    • Strigolactones stimulate internode elongation independently of gibberellins
    • de Saint Germain A., et al. Strigolactones stimulate internode elongation independently of gibberellins. Plant Physiol. 2013, 163:1012-1025.
    • (2013) Plant Physiol. , vol.163 , pp. 1012-1025
    • de Saint Germain, A.1
  • 56
    • 84891744381 scopus 로고    scopus 로고
    • A DELLA protein complex controls the arbuscular mycorrhizal symbiosis in plants
    • Yu N., et al. A DELLA protein complex controls the arbuscular mycorrhizal symbiosis in plants. Cell Res. 2014, 24:130-133.
    • (2014) Cell Res. , vol.24 , pp. 130-133
    • Yu, N.1
  • 57
    • 84890831797 scopus 로고    scopus 로고
    • Strigolactone/MAX2-induced degradation of brassinosteroid transcriptional effector BES1 regulates shoot branching
    • Wang Y., et al. Strigolactone/MAX2-induced degradation of brassinosteroid transcriptional effector BES1 regulates shoot branching. Dev. Cell 2013, 27:681-688.
    • (2013) Dev. Cell , vol.27 , pp. 681-688
    • Wang, Y.1
  • 58
    • 84867132552 scopus 로고    scopus 로고
    • An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis
    • Li Q.F., et al. An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis. Sci. Signal. 2012, 5:ra72.
    • (2012) Sci. Signal. , vol.5 , pp. ra72
    • Li, Q.F.1
  • 59
    • 84864871502 scopus 로고    scopus 로고
    • Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis
    • Bai M.Y., et al. Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nat. Cell Biol. 2012, 14:810-817.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 810-817
    • Bai, M.Y.1
  • 60
    • 84904460161 scopus 로고    scopus 로고
    • Unfolding the mysteries of strigolactone signaling
    • Zheng Z., et al. Unfolding the mysteries of strigolactone signaling. Mol. Plant 2014, 7:934-936.
    • (2014) Mol. Plant , vol.7 , pp. 934-936
    • Zheng, Z.1
  • 61
    • 72949085967 scopus 로고    scopus 로고
    • Feedback-regulation of strigolactone biosynthetic genes and strigolactone-regulated genes in Arabidopsis
    • Mashiguchi K., et al. Feedback-regulation of strigolactone biosynthetic genes and strigolactone-regulated genes in Arabidopsis. Biosci. Biotechnol. Biochem. 2009, 73:2460-2465.
    • (2009) Biosci. Biotechnol. Biochem. , vol.73 , pp. 2460-2465
    • Mashiguchi, K.1
  • 62
    • 79953041816 scopus 로고    scopus 로고
    • Signal integration in the control of shoot branching
    • Domagalska M.A., Leyser O. Signal integration in the control of shoot branching. Nat. Rev. Mol. Cell Biol. 2011, 12:211-221.
    • (2011) Nat. Rev. Mol. Cell Biol. , vol.12 , pp. 211-221
    • Domagalska, M.A.1    Leyser, O.2
  • 63
    • 0030893329 scopus 로고    scopus 로고
    • The evolution of apical dominance in maize
    • Doebley J., et al. The evolution of apical dominance in maize. Nature 1997, 386:485-488.
    • (1997) Nature , vol.386 , pp. 485-488
    • Doebley, J.1
  • 64
    • 0037324657 scopus 로고    scopus 로고
    • The OsTB1 gene negatively regulates lateral branching in rice
    • Takeda T., et al. The OsTB1 gene negatively regulates lateral branching in rice. Plant J. 2003, 33:513-520.
    • (2003) Plant J. , vol.33 , pp. 513-520
    • Takeda, T.1
  • 65
    • 34250621278 scopus 로고    scopus 로고
    • Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds
    • Aguilar-Martinez J.A., et al. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 2007, 19:458-472.
    • (2007) Plant Cell , vol.19 , pp. 458-472
    • Aguilar-Martinez, J.A.1
  • 66
    • 84855268692 scopus 로고    scopus 로고
    • The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching
    • Braun N., et al. The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching. Plant Physiol. 2012, 158:225-238.
    • (2012) Plant Physiol. , vol.158 , pp. 225-238
    • Braun, N.1
  • 67
    • 84875750236 scopus 로고    scopus 로고
    • Dynamics of strigolactone function and shoot branching responses in Pisum sativum
    • Dun E.A., et al. Dynamics of strigolactone function and shoot branching responses in Pisum sativum. Mol. Plant 2013, 6:128-140.
    • (2013) Mol. Plant , vol.6 , pp. 128-140
    • Dun, E.A.1
  • 68
    • 77955001633 scopus 로고    scopus 로고
    • FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice
    • Minakuchi K., et al. FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant Cell Physiol. 2010, 51:1127-1135.
    • (2010) Plant Cell Physiol. , vol.51 , pp. 1127-1135
    • Minakuchi, K.1
  • 69
    • 84899129179 scopus 로고    scopus 로고
    • Sugar demand, not auxin, is the initial regulator of apical dominance
    • Mason M.G., et al. Sugar demand, not auxin, is the initial regulator of apical dominance. Proc. Natl. Acad. Sci. U.S.A 2014, 111:6092-6097.
    • (2014) Proc. Natl. Acad. Sci. U.S.A , vol.111 , pp. 6092-6097
    • Mason, M.G.1
  • 70
    • 84899132374 scopus 로고    scopus 로고
    • Strigolactone promotes degradation of DWARF14, an α/β hydrolase essential for strigolactone signaling in Arabidopsis
    • Chevalier F., et al. Strigolactone promotes degradation of DWARF14, an α/β hydrolase essential for strigolactone signaling in Arabidopsis. Plant Cell 2014, 26:1134-1150.
    • (2014) Plant Cell , vol.26 , pp. 1134-1150
    • Chevalier, F.1
  • 71
    • 84868333310 scopus 로고    scopus 로고
    • Diverse roles of strigolactone signaling in maize architecture and the uncoupling of a branching-specific subnetwork
    • Guan J.C., et al. Diverse roles of strigolactone signaling in maize architecture and the uncoupling of a branching-specific subnetwork. Plant Physiol. 2012, 160:1303-1317.
    • (2012) Plant Physiol. , vol.160 , pp. 1303-1317
    • Guan, J.C.1
  • 72
    • 84873804094 scopus 로고    scopus 로고
    • Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane
    • Shinohara N., et al. Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLoS Biol. 2013, 11:e1001474.
    • (2013) PLoS Biol. , vol.11 , pp. e1001474
    • Shinohara, N.1
  • 73
    • 77956935950 scopus 로고    scopus 로고
    • A small-molecule screen identifies new functions for the plant hormone strigolactone
    • Tsuchiya Y., et al. A small-molecule screen identifies new functions for the plant hormone strigolactone. Nat. Chem. Biol. 2010, 6:741-749.
    • (2010) Nat. Chem. Biol. , vol.6 , pp. 741-749
    • Tsuchiya, Y.1
  • 74
    • 84855254094 scopus 로고    scopus 로고
    • The TOPLESS interactome: A framework for gene repression in Arabidopsis
    • Causier B., et al. The TOPLESS interactome: A framework for gene repression in Arabidopsis. Plant Physiol. 2012, 158:423-438.
    • (2012) Plant Physiol. , vol.158 , pp. 423-438
    • Causier, B.1
  • 75
    • 21344458139 scopus 로고    scopus 로고
    • Plant development is regulated by a family of auxin receptor F box proteins
    • Dharmasiri N., et al. Plant development is regulated by a family of auxin receptor F box proteins. Dev. Cell 2005, 9:109-119.
    • (2005) Dev. Cell , vol.9 , pp. 109-119
    • Dharmasiri, N.1
  • 76
    • 34247219263 scopus 로고    scopus 로고
    • Mechanism of auxin perception by the TIR1 ubiquitin ligase
    • Tan X., et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 2007, 446:640-645.
    • (2007) Nature , vol.446 , pp. 640-645
    • Tan, X.1
  • 77
    • 57049177946 scopus 로고    scopus 로고
    • Structural basis for gibberellin recognition by its receptor GID1
    • Shimada A., et al. Structural basis for gibberellin recognition by its receptor GID1. Nature 2008, 456:520-523.
    • (2008) Nature , vol.456 , pp. 520-523
    • Shimada, A.1
  • 78
    • 57049155555 scopus 로고    scopus 로고
    • Gibberellin-induced DELLA recognition by the gibberellin receptor GID1
    • Murase K., et al. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 2008, 456:459-463.
    • (2008) Nature , vol.456 , pp. 459-463
    • Murase, K.1
  • 79
    • 26944450130 scopus 로고    scopus 로고
    • GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin
    • Ueguchi-Tanaka M., et al. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 2005, 437:693-698.
    • (2005) Nature , vol.437 , pp. 693-698
    • Ueguchi-Tanaka, M.1
  • 80
    • 0037459342 scopus 로고    scopus 로고
    • Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant
    • Sasaki A., et al. Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 2003, 299:1896-1898.
    • (2003) Science , vol.299 , pp. 1896-1898
    • Sasaki, A.1
  • 81
    • 84895887400 scopus 로고    scopus 로고
    • Molecular basis and evolutionary pattern of GA-GID1-DELLA regulatory module
    • Wang Y., Deng D. Molecular basis and evolutionary pattern of GA-GID1-DELLA regulatory module. Mol. Genet. Genomics 2014, 289:1-9.
    • (2014) Mol. Genet. Genomics , vol.289 , pp. 1-9
    • Wang, Y.1    Deng, D.2
  • 82
    • 33947513905 scopus 로고    scopus 로고
    • Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis
    • Griffiths J., et al. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell 2006, 18:3399-3414.
    • (2006) Plant Cell , vol.18 , pp. 3399-3414
    • Griffiths, J.1
  • 83
    • 2942633715 scopus 로고    scopus 로고
    • The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation
    • Dill A., et al. The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation. Plant Cell 2004, 16:1392-1405.
    • (2004) Plant Cell , vol.16 , pp. 1392-1405
    • Dill, A.1
  • 84
    • 34548295852 scopus 로고    scopus 로고
    • Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin
    • Ueguchi-Tanaka M., et al. Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. Plant Cell 2007, 19:2140-2155.
    • (2007) Plant Cell , vol.19 , pp. 2140-2155
    • Ueguchi-Tanaka, M.1
  • 85
    • 57749084489 scopus 로고    scopus 로고
    • Proteolysis-independent downregulation of DELLA repression in Arabidopsis by the gibberellin receptor GIBBERELLIN INSENSITIVE DWARF1
    • Ariizumi T., et al. Proteolysis-independent downregulation of DELLA repression in Arabidopsis by the gibberellin receptor GIBBERELLIN INSENSITIVE DWARF1. Plant Cell 2008, 20:2447-2459.
    • (2008) Plant Cell , vol.20 , pp. 2447-2459
    • Ariizumi, T.1
  • 86
    • 57749113495 scopus 로고    scopus 로고
    • Release of the repressive activity of rice DELLA protein SLR1 by gibberellin does not require SLR1 degradation in the gid2 mutant
    • Ueguchi-Tanaka M., et al. Release of the repressive activity of rice DELLA protein SLR1 by gibberellin does not require SLR1 degradation in the gid2 mutant. Plant Cell 2008, 20:2437-2446.
    • (2008) Plant Cell , vol.20 , pp. 2437-2446
    • Ueguchi-Tanaka, M.1
  • 87
    • 78650909424 scopus 로고    scopus 로고
    • A rice gid1 suppressor mutant reveals that gibberellin is not always required for interaction between its receptor, GID1, and DELLA proteins
    • Yamamoto Y., et al. A rice gid1 suppressor mutant reveals that gibberellin is not always required for interaction between its receptor, GID1, and DELLA proteins. Plant Cell 2010, 22:3589-3602.
    • (2010) Plant Cell , vol.22 , pp. 3589-3602
    • Yamamoto, Y.1
  • 88
    • 84898768916 scopus 로고    scopus 로고
    • Plant ubiquitin ligases as signaling hubs
    • Shabek N., Zheng N. Plant ubiquitin ligases as signaling hubs. Nat. Struct. Mol. Biol. 2014, 21:293-296.
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 293-296
    • Shabek, N.1    Zheng, N.2
  • 89
    • 77957778538 scopus 로고    scopus 로고
    • Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice
    • Hirano K., et al. Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice. Plant Cell 2010, 22:2680-2696.
    • (2010) Plant Cell , vol.22 , pp. 2680-2696
    • Hirano, K.1
  • 90
    • 84872503533 scopus 로고    scopus 로고
    • The structure of the karrikin-insensitive protein (KAI2) in Arabidopsis thaliana
    • Bythell-Douglas R., et al. The structure of the karrikin-insensitive protein (KAI2) in Arabidopsis thaliana. PLoS One 2013, 8:e54758.
    • (2013) PLoS One , vol.8 , pp. e54758
    • Bythell-Douglas, R.1
  • 91
    • 84865848723 scopus 로고    scopus 로고
    • A synthetic approach reveals extensive tunability of auxin signaling
    • Havens K.A., et al. A synthetic approach reveals extensive tunability of auxin signaling. Plant Physiol. 2012, 160:135-142.
    • (2012) Plant Physiol. , vol.160 , pp. 135-142
    • Havens, K.A.1
  • 92
    • 76049118300 scopus 로고    scopus 로고
    • Complex regulation of the TIR1/AFB family of auxin receptors
    • Parry G., et al. Complex regulation of the TIR1/AFB family of auxin receptors. Proc. Natl. Acad. Sci. U.S.A 2009, 106:22540-22545.
    • (2009) Proc. Natl. Acad. Sci. U.S.A , vol.106 , pp. 22540-22545
    • Parry, G.1
  • 93
    • 40449131628 scopus 로고    scopus 로고
    • TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis
    • Szemenyei H., et al. TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 2008, 319:1384-1386.
    • (2008) Science , vol.319 , pp. 1384-1386
    • Szemenyei, H.1
  • 94
    • 77950439369 scopus 로고    scopus 로고
    • NINJA connects the co-repressor TOPLESS to jasmonate signalling
    • Pauwels L., et al. NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 2010, 464:788-791.
    • (2010) Nature , vol.464 , pp. 788-791
    • Pauwels, L.1
  • 95
    • 84859494166 scopus 로고    scopus 로고
    • Aberrant spikelet and panicle1, encoding a TOPLESS-related transcriptional co-repressor, is involved in the regulation of meristem fate in rice
    • Yoshida A., et al. Aberrant spikelet and panicle1, encoding a TOPLESS-related transcriptional co-repressor, is involved in the regulation of meristem fate in rice. Plant J. 2012, 70:327-339.
    • (2012) Plant J. , vol.70 , pp. 327-339
    • Yoshida, A.1
  • 96
    • 77954965001 scopus 로고    scopus 로고
    • Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice
    • Umehara M., et al. Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant Cell Physiol. 2010, 51:1118-1126.
    • (2010) Plant Cell Physiol. , vol.51 , pp. 1118-1126
    • Umehara, M.1
  • 97
    • 84868322847 scopus 로고    scopus 로고
    • Strigolactones are involved in root response to low phosphate conditions in Arabidopsis
    • Mayzlish-Gati E., et al. Strigolactones are involved in root response to low phosphate conditions in Arabidopsis. Plant Physiol. 2012, 160:1329-1341.
    • (2012) Plant Physiol. , vol.160 , pp. 1329-1341
    • Mayzlish-Gati, E.1
  • 98
    • 82755166960 scopus 로고    scopus 로고
    • Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2
    • Liu W., et al. Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell 2011, 23:3853-3865.
    • (2011) Plant Cell , vol.23 , pp. 3853-3865
    • Liu, W.1
  • 99
    • 79251532058 scopus 로고    scopus 로고
    • The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events
    • Balzergue C., et al. The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. J. Exp. Bot. 2011, 62:1049-1060.
    • (2011) J. Exp. Bot. , vol.62 , pp. 1049-1060
    • Balzergue, C.1
  • 100
    • 84907776656 scopus 로고    scopus 로고
    • Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice
    • Sun H., et al. Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice. J. Exp. Bot. 2014, 10.1093/jxb/eru029.
    • (2014) J. Exp. Bot.
    • Sun, H.1
  • 101
    • 78650751473 scopus 로고    scopus 로고
    • Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis
    • Kapulnik Y., et al. Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 2011, 233:209-216.
    • (2011) Planta , vol.233 , pp. 209-216
    • Kapulnik, Y.1
  • 102
    • 79954596954 scopus 로고    scopus 로고
    • Strigolactones are regulators of root development
    • Koltai H. Strigolactones are regulators of root development. New Phytol. 2011, 190:545-549.
    • (2011) New Phytol. , vol.190 , pp. 545-549
    • Koltai, H.1
  • 103
    • 84884669549 scopus 로고    scopus 로고
    • Strigolactones fine-tune the root system
    • Rasmussen A., et al. Strigolactones fine-tune the root system. Planta 2013, 238:615-626.
    • (2013) Planta , vol.238 , pp. 615-626
    • Rasmussen, A.1
  • 104
    • 84859356651 scopus 로고    scopus 로고
    • Strigolactones suppress adventitious rooting in Arabidopsis and pea
    • Rasmussen A., et al. Strigolactones suppress adventitious rooting in Arabidopsis and pea. Plant Physiol. 2012, 158:1976-1987.
    • (2012) Plant Physiol. , vol.158 , pp. 1976-1987
    • Rasmussen, A.1
  • 105
    • 84876418170 scopus 로고    scopus 로고
    • Strigolactone signaling in the endodermis is sufficient to restore root responses and involves SHORT HYPOCOTYL 2 (SHY2) activity
    • Koren D., et al. Strigolactone signaling in the endodermis is sufficient to restore root responses and involves SHORT HYPOCOTYL 2 (SHY2) activity. New Phytol. 2013, 198:866-874.
    • (2013) New Phytol. , vol.198 , pp. 866-874
    • Koren, D.1
  • 106
    • 84868544963 scopus 로고    scopus 로고
    • The D3 F-box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis
    • Yoshida S., et al. The D3 F-box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis. New Phytol. 2012, 196:1208-1216.
    • (2012) New Phytol. , vol.196 , pp. 1208-1216
    • Yoshida, S.1
  • 107
    • 84898761615 scopus 로고    scopus 로고
    • New strigolactone analogs as plant hormones with low activities in the rhizosphere
    • Boyer F.D., et al. New strigolactone analogs as plant hormones with low activities in the rhizosphere. Mol. Plant 2014, 7:675-690.
    • (2014) Mol. Plant , vol.7 , pp. 675-690
    • Boyer, F.D.1
  • 108
    • 84897390688 scopus 로고    scopus 로고
    • MiR444a has multiple functions in the rice nitrate-signaling pathway
    • Yan Y., et al. miR444a has multiple functions in the rice nitrate-signaling pathway. Plant J. 2014, 78:44-55.
    • (2014) Plant J. , vol.78 , pp. 44-55
    • Yan, Y.1
  • 109
    • 77956664989 scopus 로고    scopus 로고
    • Strigolactones are positive regulators of light-harvesting genes in tomato
    • Mayzlish-Gati E., et al. Strigolactones are positive regulators of light-harvesting genes in tomato. J. Exp. Bot. 2010, 61:3129-3136.
    • (2010) J. Exp. Bot. , vol.61 , pp. 3129-3136
    • Mayzlish-Gati, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.