메뉴 건너뛰기




Volumn 89, Issue , 2015, Pages 305-313

Analysis of performances of a manifold microchannel heat sink with nanofluids

Author keywords

Entropy generation; Manifold microchannel heat sink; Nanofluids

Indexed keywords

FINITE VOLUME METHOD; HEAT SINKS; MICROCHANNELS; NANOFLUIDICS; NANOPARTICLES; NUSSELT NUMBER; PARTICLE SIZE; PUMPS; REYNOLDS NUMBER; VOLUME FRACTION;

EID: 84949134107     PISSN: 12900729     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijthermalsci.2014.11.016     Document Type: Article
Times cited : (53)

References (37)
  • 6
    • 77955293977 scopus 로고    scopus 로고
    • Experimental investigation of an ultrathin manifold microchannel heat sink for liquid-cooled Chips
    • W. Escher, T. Brunschwiler, B. Michel, D. Poulikakos, Experimental investigation of an ultrathin manifold microchannel heat sink for liquid-cooled Chips, J. Heat Transfer 132 (2010) 081402-081411.
    • (2010) J. Heat Transfer , vol.132 , pp. 081402-081411
    • Escher, W.1    Brunschwiler, T.2    Michel, B.3    Poulikakos, D.4
  • 8
    • 0032825295 scopus 로고    scopus 로고
    • Measuring thermal conductivity of fluids containing oxide nanoparticles
    • S. Lee, S.U.S. Choi, Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transfer 121 (1999) 280-289.
    • (1999) J. Heat Transfer , vol.121 , pp. 280-289
    • Lee, S.1    Choi, S.U.S.2
  • 10
    • 0001435905 scopus 로고    scopus 로고
    • Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles
    • J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett. 78 (6) (2001) 718-720.
    • (2001) Appl. Phys. Lett. , vol.78 , Issue.6 , pp. 718-720
    • Eastman, J.A.1    Choi, S.U.S.2    Li, S.3    Yu, W.4    Thompson, L.J.5
  • 11
    • 0042418742 scopus 로고    scopus 로고
    • Temperature dependence of thermal conductivity enhancement for nanofluids
    • S.K. Das, N. Putra, P. Theisen, W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Transfer 125 (2003) 567-574.
    • (2003) J. Heat Transfer , vol.125 , pp. 567-574
    • Das, S.K.1    Putra, N.2    Theisen, P.3    Roetzel, W.4
  • 12
    • 33646739701 scopus 로고    scopus 로고
    • Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids)
    • C.H. Li, G.P. Peterson, Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids), J. Appl. Phys. 99 (2006) 084314-1-084314-8.
    • (2006) J. Appl. Phys. , vol.99 , pp. 0843141-0843148
    • Li, C.H.1    Peterson, G.P.2
  • 13
    • 13644261470 scopus 로고    scopus 로고
    • Heat transfer properties of nanoparticles-in-fluid dispersions(nanofluids) in laminar flow
    • Y. Yang, Z.G. Zhang, E.A. Grulke, W.B. Anderson, G. Wu, Heat transfer properties of nanoparticles-in-fluid dispersions(nanofluids) in laminar flow, Int. J. Heat Mass Transfer 48 (2005) 1107-1116.
    • (2005) Int. J. Heat Mass Transfer , vol.48 , pp. 1107-1116
    • Yang, Y.1    Zhang, Z.G.2    Grulke, E.A.3    Anderson, W.B.4    Wu, G.5
  • 14
    • 17644401043 scopus 로고    scopus 로고
    • Laminar nanofluid flow in micro heat-sinks
    • J. Koo, C. Kleinstreuer, Laminar nanofluid flow in micro heat-sinks, Int. J. Heat Mass Transfer 48 (2005) 2652-2661.
    • (2005) Int. J. Heat Mass Transfer , vol.48 , pp. 2652-2661
    • Koo, J.1    Kleinstreuer, C.2
  • 15
    • 79955712227 scopus 로고    scopus 로고
    • Thermal and hydraulic performance of counter flow microchannel heat exchangers with and without nanofluids
    • H.R. Seyf, S.K. Mohammadian, Thermal and hydraulic performance of counter flow microchannel heat exchangers with and without nanofluids, J. Heat Transfer 133 (2011) 081801-081809.
    • (2011) J. Heat Transfer , vol.133 , pp. 081801-081809
    • Seyf, H.R.1    Mohammadian, S.K.2
  • 16
    • 84861529423 scopus 로고    scopus 로고
    • Analysis of entropy generation and convective heat transfer of Al2O3 nanofluid flow in a tangential micro heat sink
    • A. Shalchi-Tabrizi, H.R. Seyf, Analysis of entropy generation and convective heat transfer of Al2O3 nanofluid flow in a tangential micro heat sink, Int. J. Heat Mass Transfer 55 (2012) 4366-4375.
    • (2012) Int. J. Heat Mass Transfer , vol.55 , pp. 4366-4375
    • Shalchi-Tabrizi, A.1    Seyf, H.R.2
  • 17
    • 84860708364 scopus 로고    scopus 로고
    • Analysis of Brownian motion and particle size effects on the thermal behavior and cooling performance of microchannel heat sinks
    • H.R. Seyf, B. Nikaaein, Analysis of Brownian motion and particle size effects on the thermal behavior and cooling performance of microchannel heat sinks, Int. J. Therm. Sci. 58 (2012) 36-44.
    • (2012) Int. J. Therm. Sci. , vol.58 , pp. 36-44
    • Seyf, H.R.1    Nikaaein, B.2
  • 18
    • 84860784800 scopus 로고    scopus 로고
    • Computational analysis of nanofluid effects on convective heat transfer enhancement of micro-pin-fin heat sinks
    • H.R. Seyf, M. Feizbakhshi, Computational analysis of nanofluid effects on convective heat transfer enhancement of micro-pin-fin heat sinks, Int. J. Therm. Sci. 58 (2012) 168-179.
    • (2012) Int. J. Therm. Sci. , vol.58 , pp. 168-179
    • Seyf, H.R.1    Feizbakhshi, M.2
  • 19
    • 33645854344 scopus 로고    scopus 로고
    • Experimental investigation of oxide nanofluids laminar flow convective heat transfer
    • S.Z. Heris, S.G. Etemad, M.N. Esfahany, Experimental investigation of oxide nanofluids laminar flow convective heat transfer, Int. Commun. Heat Mass Transfer 33 (2006) 529-535.
    • (2006) Int. Commun. Heat Mass Transfer , vol.33 , pp. 529-535
    • Heris, S.Z.1    Etemad, S.G.2    Esfahany, M.N.3
  • 20
    • 84887972779 scopus 로고    scopus 로고
    • Performance augmentation and optimization of aluminium oxide-water nanofluid flow in a two-fluid microchannel heat exchanger
    • S.K. Mohammadian, H.R. Seyf, Y. Zhang, Performance augmentation and optimization of aluminium oxide-water nanofluid flow in a two-fluid microchannel heat exchanger, J. Heat Transfer 136 (2) (2013) 021701.
    • (2013) J. Heat Transfer , vol.136 , Issue.2 , pp. 021701
    • Mohammadian, S.K.1    Seyf, H.R.2    Zhang, Y.3
  • 21
    • 0037398755 scopus 로고    scopus 로고
    • Three-dimensional numerical optimization of a manifold microchannel heat sink
    • J.H. Ryu, D.H. Choi, S.J. Kim, Three-dimensional numerical optimization of a manifold microchannel heat sink, Int. J. Heat Mass Transfer 46 (2003) 1553-1562.
    • (2003) Int. J. Heat Mass Transfer , vol.46 , pp. 1553-1562
    • Ryu, J.H.1    Choi, D.H.2    Kim, S.J.3
  • 22
    • 0343192359 scopus 로고    scopus 로고
    • Conceptions for heat transfer correlation of nanofluids
    • Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transfer 43 (2000) 3701-3707.
    • (2000) Int. J. Heat Mass Transfer , vol.43 , pp. 3701-3707
    • Xuan, Y.1    Roetzel, W.2
  • 23
    • 79959768136 scopus 로고    scopus 로고
    • A critical synthesis of thermophysical characteristics of nanofluids
    • K. Khanafer, K. Vafai, A critical synthesis of thermophysical characteristics of nanofluids, Int. J. Heat Mass Transfer 54 (2011) 4410-4428.
    • (2011) Int. J. Heat Mass Transfer , vol.54 , pp. 4410-4428
    • Khanafer, K.1    Vafai, K.2
  • 24
    • 16244411133 scopus 로고    scopus 로고
    • A new thermal conductivity model for nanofluids
    • J. Koo, C. Kleinstreuer, A new thermal conductivity model for nanofluids, J. Nanoparticle Res. 6 (2004) 577-588.
    • (2004) J. Nanoparticle Res. , vol.6 , pp. 577-588
    • Koo, J.1    Kleinstreuer, C.2
  • 25
    • 46249085659 scopus 로고    scopus 로고
    • Thermal performance of nanofluid flow in microchannels
    • J. Li, C. Kleinstreuer, Thermal performance of nanofluid flow in microchannels, Int. J. Heat Fluid Flow 29 (2008) 1221-1232.
    • (2008) Int. J. Heat Fluid Flow , vol.29 , pp. 1221-1232
    • Li, J.1    Kleinstreuer, C.2
  • 26
    • 0242582398 scopus 로고
    • Thermal conductivity of heterogeneous two component systems
    • R.L. Hamilton, O.K. Crosser, Thermal conductivity of heterogeneous two component systems, I EC Fundam. 1 (1962) 187-191.
    • (1962) I EC Fundam. , vol.1 , pp. 187-191
    • Hamilton, R.L.1    Crosser, O.K.2
  • 28
    • 33745815300 scopus 로고    scopus 로고
    • Brownian motion based convective conductive model for the effective thermal conductivity of nanofluids
    • R.S. Prasher, P. Bhattacharya, P.E. Phelan, Brownian motion based convective conductive model for the effective thermal conductivity of nanofluids, J. Heat Transfer 128 (2006) 588-595.
    • (2006) J. Heat Transfer , vol.128 , pp. 588-595
    • Prasher, R.S.1    Bhattacharya, P.2    Phelan, P.E.3
  • 29
    • 34447630661 scopus 로고    scopus 로고
    • Effects of various parameters on nanofluid thermal conductivity
    • S.P. Jang, S.U.S. Choi, Effects of various parameters on nanofluid thermal conductivity, J. Heat Transfer 129 (2007) 617-623.
    • (2007) J. Heat Transfer , vol.129 , pp. 617-623
    • Jang, S.P.1    Choi, S.U.S.2
  • 30
    • 0012452966 scopus 로고
    • The viscosity of concentrated suspensions and solutions
    • H.C. Brinkman, The viscosity of concentrated suspensions and solutions, J. Chem. Phys. 20 (1952) 571-581.
    • (1952) J. Chem. Phys. , vol.20 , pp. 571-581
    • Brinkman, H.C.1
  • 31
    • 67349185148 scopus 로고    scopus 로고
    • Thermal control of electroosmotic flow in a microchannel through temperature-dependent properties
    • H.S. Kwak, H. Kin, M.H. Jae, S. Tae-Ho, Thermal control of electroosmotic flow in a microchannel through temperature-dependent properties, J. Colloid Interface Sci. 335 (2009) 123-129.
    • (2009) J. Colloid Interface Sci. , vol.335 , pp. 123-129
    • Kwak, H.S.1    Kin, H.2    Jae, M.H.3    Tae-Ho, S.4
  • 32
    • 36149005932 scopus 로고
    • Thermal conductivity of silicon and germanium from 3K to the melting point
    • C.J. Glassbrenner, G.A. Slack, Thermal conductivity of silicon and germanium from 3K to the melting point, Phys. Rev. 134 (1964) A1058-A1069.
    • (1964) Phys. Rev. , vol.134 , pp. A1058-A1069
    • Glassbrenner, C.J.1    Slack, G.A.2
  • 33
    • 67349283110 scopus 로고    scopus 로고
    • Influence of channel geometry on the performance of a counter flow microchannel heat exchanger
    • M.I. Hasan, A.A. Rageb, M. Yaghoubi, H. Homayoni, Influence of channel geometry on the performance of a counter flow microchannel heat exchanger, Int. J. Therm. Sci. 48 (8) (2009) 1607-1618.
    • (2009) Int. J. Therm. Sci. , vol.48 , Issue.8 , pp. 1607-1618
    • Hasan, M.I.1    Rageb, A.A.2    Yaghoubi, M.3    Homayoni, H.4
  • 35
    • 63949084066 scopus 로고    scopus 로고
    • Brownian dynamic simulation for the prediction of effective thermal conductivity of nanofluid
    • S. Jain, H.E. Patrel, S.K. Das, Brownian dynamic simulation for the prediction of effective thermal conductivity of nanofluid, J. Nanopart. Res. 11 (2009) 767-773.
    • (2009) J. Nanopart. Res. , vol.11 , pp. 767-773
    • Jain, S.1    Patrel, H.E.2    Das, S.K.3
  • 36
    • 58149524815 scopus 로고    scopus 로고
    • Effect of alumina nanoparticles in the fluid on heat transfer in double-pipe heat exchanger system
    • B.H. Chun, H.U. Kang, S.H. Kim, Effect of alumina nanoparticles in the fluid on heat transfer in double-pipe heat exchanger system, Korean J. Chem. Eng. 25 (2008) 966-971.
    • (2008) Korean J. Chem. Eng. , vol.25 , pp. 966-971
    • Chun, B.H.1    Kang, H.U.2    Kim, S.H.3
  • 37
    • 56649084923 scopus 로고    scopus 로고
    • Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties
    • P.K. Namburu, D.K. Das, K.M. Tanguturi, R.S. Vajjha, Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties, Int. J. Therm. Sci. 48 (2009) 290-302.
    • (2009) Int. J. Therm. Sci. , vol.48 , pp. 290-302
    • Namburu, P.K.1    Das, D.K.2    Tanguturi, K.M.3    Vajjha, R.S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.