메뉴 건너뛰기




Volumn 29, Issue 4, 2008, Pages 1221-1232

Thermal performance of nanofluid flow in microchannels

Author keywords

Brownian motion; Effective thermal conductivity; Micro mixing; Microchannel heat sinks; Nanofluid flow

Indexed keywords

BROWNIAN MOVEMENT; COPPER OXIDES; EMULSIFICATION; LITHIUM; MATHEMATICAL MODELS; MICROCHANNELS; MICROFLUIDICS; MIXED CONVECTION; MIXING; MULTITASKING; OFFSHORE OIL WELL PRODUCTION; THERMOELECTRICITY; VOLUME FRACTION;

EID: 46249085659     PISSN: 0142727X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijheatfluidflow.2008.01.005     Document Type: Article
Times cited : (252)

References (39)
  • 1
    • 35148869674 scopus 로고    scopus 로고
    • The thermal conductivity of alumina nanoparticles dispersed in ethylene glycol
    • Beck M.P., Sun T., and Teja A.S. The thermal conductivity of alumina nanoparticles dispersed in ethylene glycol. Fluid Phase Equilibria 260 (2007) 275-278
    • (2007) Fluid Phase Equilibria , vol.260 , pp. 275-278
    • Beck, M.P.1    Sun, T.2    Teja, A.S.3
  • 4
    • 23844438601 scopus 로고    scopus 로고
    • Analysis of microchannel heat sink performance using nanofluids
    • Chein R., and Chuang J. Analysis of microchannel heat sink performance using nanofluids. Applied Thermal Engineering 25 (2005) 3104-3114
    • (2005) Applied Thermal Engineering , vol.25 , pp. 3104-3114
    • Chein, R.1    Chuang, J.2
  • 6
    • 46249092101 scopus 로고    scopus 로고
    • Choi, S.U.S., 1995. Enhancing thermal conductivity of fluids with nanoparticles. In: Sininer, D.A., Wang, H.P. (Eds.), Developments and Applications of Non-Newtonian Flows, ASME, New York, FED- vol. 231/MD-Vol. 66.
    • Choi, S.U.S., 1995. Enhancing thermal conductivity of fluids with nanoparticles. In: Sininer, D.A., Wang, H.P. (Eds.), Developments and Applications of Non-Newtonian Flows, ASME, New York, FED- vol. 231/MD-Vol. 66.
  • 9
    • 0042418742 scopus 로고    scopus 로고
    • Temperature dependence of thermal conductivity enhancement for nanofluids
    • Das S.K., Putra N., Thiesen P., and Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. Journal of Heat Transfer 125 (2003) 567-574
    • (2003) Journal of Heat Transfer , vol.125 , pp. 567-574
    • Das, S.K.1    Putra, N.2    Thiesen, P.3    Roetzel, W.4
  • 10
    • 0001435905 scopus 로고    scopus 로고
    • Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles
    • Eastman J.A., Choi S.U.S., Li S., Yu W., and Thompson L.J. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters 78 6 (2001) 718-720
    • (2001) Applied Physics Letters , vol.78 , Issue.6 , pp. 718-720
    • Eastman, J.A.1    Choi, S.U.S.2    Li, S.3    Yu, W.4    Thompson, L.J.5
  • 11
    • 33644690829 scopus 로고    scopus 로고
    • Role of Brownian motion hydrodynamics on nanofluid thermal conductivity
    • Evans W., Fish J., and Keblinski P. Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Applied Physics Letter 88 (2006) 093116-1-3
    • (2006) Applied Physics Letter , vol.88
    • Evans, W.1    Fish, J.2    Keblinski, P.3
  • 12
    • 0242499391 scopus 로고    scopus 로고
    • Interfacial heat flow in carbon nanotube suspensions
    • Huxtable S.T., Cahill D.G., Shenogin S., et al. Interfacial heat flow in carbon nanotube suspensions. Nature Materials 2 (2003) 731-734
    • (2003) Nature Materials , vol.2 , pp. 731-734
    • Huxtable, S.T.1    Cahill, D.G.2    Shenogin, S.3
  • 13
    • 2942694254 scopus 로고    scopus 로고
    • The role of Brownian motion in the enhanced thermal conductivity of nanofluids
    • Jang S.P., and Choi S.U.S. The role of Brownian motion in the enhanced thermal conductivity of nanofluids. Applied Physics Letters 84 (2004) 4316-4318
    • (2004) Applied Physics Letters , vol.84 , pp. 4316-4318
    • Jang, S.P.1    Choi, S.U.S.2
  • 14
    • 33745233809 scopus 로고    scopus 로고
    • Cooling performance of a microchannel heat sink with nanofluids
    • Jang S.P., and Choi S.U.S. Cooling performance of a microchannel heat sink with nanofluids. Applied Thermal Engineering 26 (2006) 2457-2463
    • (2006) Applied Thermal Engineering , vol.26 , pp. 2457-2463
    • Jang, S.P.1    Choi, S.U.S.2
  • 15
    • 34447630661 scopus 로고    scopus 로고
    • Effects of various parameters on nanofluid thermal conductivity
    • Jang S.P., and Choi S.U.S. Effects of various parameters on nanofluid thermal conductivity. Journal of Heat transfer 129 (2007) 617-623
    • (2007) Journal of Heat transfer , vol.129 , pp. 617-623
    • Jang, S.P.1    Choi, S.U.S.2
  • 16
    • 46249119072 scopus 로고    scopus 로고
    • eff-model. ASME Journal of Heat Transfer.
    • eff-model. ASME Journal of Heat Transfer.
  • 17
    • 0141830183 scopus 로고    scopus 로고
    • Liquid flow in microchannels: experimental observations and computational analysis of microfluidics effect
    • Koo J., and Kleinstreuer C. Liquid flow in microchannels: experimental observations and computational analysis of microfluidics effect. Journal of Micromechanics and Microengineering 13 (2003) 568-579
    • (2003) Journal of Micromechanics and Microengineering , vol.13 , pp. 568-579
    • Koo, J.1    Kleinstreuer, C.2
  • 20
    • 26044464062 scopus 로고    scopus 로고
    • Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids
    • Koo J., and Kleinstreuer C. Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids. International Communications in Heat and Mass Transfer 32 (2005) 1111-1118
    • (2005) International Communications in Heat and Mass Transfer , vol.32 , pp. 1111-1118
    • Koo, J.1    Kleinstreuer, C.2
  • 23
    • 33646739701 scopus 로고    scopus 로고
    • Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids)
    • Li C.H., and Peterson G.P. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). Journal of Applied Physics 99 (2006) 084314
    • (2006) Journal of Applied Physics , vol.99 , pp. 084314
    • Li, C.H.1    Peterson, G.P.2
  • 24
    • 46249088616 scopus 로고    scopus 로고
    • Li, J., 2008. Computational analysis of nanofluid flow in microchannels with applications to micro-heat sinks and bio-MEMS, Ph.D. dissertation, MAE department, NCSU, Raleigh, NC.
    • Li, J., 2008. Computational analysis of nanofluid flow in microchannels with applications to micro-heat sinks and bio-MEMS, Ph.D. dissertation, MAE department, NCSU, Raleigh, NC.
  • 25
    • 3242717935 scopus 로고    scopus 로고
    • Three-dimensional analysis of heat transfer in a micro-heat sink with single phase flow
    • Li J., Peterson G.P., and Cheng P. Three-dimensional analysis of heat transfer in a micro-heat sink with single phase flow. International Journal of Heat and Mass Transfer 47 (2004) 4215-4231
    • (2004) International Journal of Heat and Mass Transfer , vol.47 , pp. 4215-4231
    • Li, J.1    Peterson, G.P.2    Cheng, P.3
  • 27
    • 0031143265 scopus 로고    scopus 로고
    • Effective thermal conductivity of particulate composites with interfacial thermal resistance
    • Nan C.-W., Birringer R., Clarke D.R., and Gleiter H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. Journal of Applied Physics 81 (1997) 6692-6699
    • (1997) Journal of Applied Physics , vol.81 , pp. 6692-6699
    • Nan, C.-W.1    Birringer, R.2    Clarke, D.R.3    Gleiter, H.4
  • 28
    • 33745815300 scopus 로고    scopus 로고
    • Brownian motion based convective conductive model for the effective thermal conductivity of nanofluids
    • Prasher R.S., Bhattacharya P., and Phelan P.E. Brownian motion based convective conductive model for the effective thermal conductivity of nanofluids. Journal of Heat Transfer 128 (2006) 588-595
    • (2006) Journal of Heat Transfer , vol.128 , pp. 588-595
    • Prasher, R.S.1    Bhattacharya, P.2    Phelan, P.E.3
  • 30
    • 35348819950 scopus 로고    scopus 로고
    • Molecular dynamics simulation of effective thermal conductivity and study of enhanced thermal transport mechanism in nanofluids
    • Sarkar S., and Selvam R.P. Molecular dynamics simulation of effective thermal conductivity and study of enhanced thermal transport mechanism in nanofluids. Journal of Applied Physics 102 (2007) 074302-1-7
    • (2007) Journal of Applied Physics , vol.102
    • Sarkar, S.1    Selvam, R.P.2
  • 31
    • 33751105214 scopus 로고    scopus 로고
    • Study of thermal transport in nanoparticle suspensions using forced Rayleigh scattering
    • Venerus D.C., Kabadi M.S., Lee S., and Peres-Luna V. Study of thermal transport in nanoparticle suspensions using forced Rayleigh scattering. Journal of Applied Physics 100 (2006) 094310-1-5
    • (2006) Journal of Applied Physics , vol.100
    • Venerus, D.C.1    Kabadi, M.S.2    Lee, S.3    Peres-Luna, V.4
  • 32
    • 33745747708 scopus 로고    scopus 로고
    • Modeling transient absorption and thermal conductivity in a simple nanofluid
    • Vladkov M., and Barrat J.L. Modeling transient absorption and thermal conductivity in a simple nanofluid. Nanoletters 6 6 (2006) 1224-1228
    • (2006) Nanoletters , vol.6 , Issue.6 , pp. 1224-1228
    • Vladkov, M.1    Barrat, J.L.2
  • 33
    • 0036966697 scopus 로고    scopus 로고
    • Colloidal metal particles as probes of nanoscale thermal transport in fluids
    • Wilson O.M., Hu X., Cahill D.G., and Braun P.V. Colloidal metal particles as probes of nanoscale thermal transport in fluids. Physical Review B 66 (2002) 224301-1-6
    • (2002) Physical Review B , vol.66
    • Wilson, O.M.1    Hu, X.2    Cahill, D.G.3    Braun, P.V.4
  • 34
    • 0037570768 scopus 로고    scopus 로고
    • Friction factors in smooth trapezoidal silicon microchannels with different aspect ratios
    • Wu H.Y., and Cheng P. Friction factors in smooth trapezoidal silicon microchannels with different aspect ratios. International Journal of Heat and Mass Transfer 46 14 (2003) 2519-2525
    • (2003) International Journal of Heat and Mass Transfer , vol.46 , Issue.14 , pp. 2519-2525
    • Wu, H.Y.1    Cheng, P.2
  • 35
    • 0036537378 scopus 로고    scopus 로고
    • Thermal conductivity enhancement of suspensions containing nanosized alumina particles
    • Xie H.Q., Wang J.C., Xi T.G., Liu Y., Ai F., and Wu Q. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. Journal of Applied Physics 91 7 (2002) 4568-4572
    • (2002) Journal of Applied Physics , vol.91 , Issue.7 , pp. 4568-4572
    • Xie, H.Q.1    Wang, J.C.2    Xi, T.G.3    Liu, Y.4    Ai, F.5    Wu, Q.6
  • 36
    • 33748333479 scopus 로고    scopus 로고
    • Stochastic thermal transport of nanoparticle suspensions
    • Xuan Y., Li Q., Zhang X., and Fujii M. Stochastic thermal transport of nanoparticle suspensions. Journal of Applied Physics 100 (2006) 043507
    • (2006) Journal of Applied Physics , vol.100 , pp. 043507
    • Xuan, Y.1    Li, Q.2    Zhang, X.3    Fujii, M.4
  • 38
    • 33645671456 scopus 로고    scopus 로고
    • Model for the effective thermal conductivity of carbon nanotube composites
    • Xue Q.Z. Model for the effective thermal conductivity of carbon nanotube composites. Nanotechnology 17 (2006) 1655-1660
    • (2006) Nanotechnology , vol.17 , pp. 1655-1660
    • Xue, Q.Z.1
  • 39
    • 46249122041 scopus 로고    scopus 로고
    • Zhou, L.P., Wang, B.X., 2002. Experimental research on the thermophysical properties of nanoparticle suspensions using the quasi-steady method. Annual Proceeding of Chinese Engineering Thermophysics. pp. 889-892 (in Chinese).
    • Zhou, L.P., Wang, B.X., 2002. Experimental research on the thermophysical properties of nanoparticle suspensions using the quasi-steady method. Annual Proceeding of Chinese Engineering Thermophysics. pp. 889-892 (in Chinese).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.