-
1
-
-
35148869674
-
The thermal conductivity of alumina nanoparticles dispersed in ethylene glycol
-
Beck M.P., Sun T., and Teja A.S. The thermal conductivity of alumina nanoparticles dispersed in ethylene glycol. Fluid Phase Equilibria 260 (2007) 275-278
-
(2007)
Fluid Phase Equilibria
, vol.260
, pp. 275-278
-
-
Beck, M.P.1
Sun, T.2
Teja, A.S.3
-
3
-
-
34249704477
-
Temperature effect on the stability if CuO nanofluids based on measured particle distribution
-
Chang H., Lo C.H., Tsung T.T., Cho Y.Y., Tien D.C., Chen L.C., and Thai C.H. Temperature effect on the stability if CuO nanofluids based on measured particle distribution. Key Engineering Materials 295-296 (2005) 51-56
-
(2005)
Key Engineering Materials
, vol.295-296
, pp. 51-56
-
-
Chang, H.1
Lo, C.H.2
Tsung, T.T.3
Cho, Y.Y.4
Tien, D.C.5
Chen, L.C.6
Thai, C.H.7
-
4
-
-
23844438601
-
Analysis of microchannel heat sink performance using nanofluids
-
Chein R., and Chuang J. Analysis of microchannel heat sink performance using nanofluids. Applied Thermal Engineering 25 (2005) 3104-3114
-
(2005)
Applied Thermal Engineering
, vol.25
, pp. 3104-3114
-
-
Chein, R.1
Chuang, J.2
-
5
-
-
0242468497
-
Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing
-
Choi E.S., Brooks J.S., Eaton D.L., Al-Haik M.S., Hussaini M.Y., Garmestani H., Li D., and Dahmen K. Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. Journal of Applied Physics 94 9 (2003) 6034-6039
-
(2003)
Journal of Applied Physics
, vol.94
, Issue.9
, pp. 6034-6039
-
-
Choi, E.S.1
Brooks, J.S.2
Eaton, D.L.3
Al-Haik, M.S.4
Hussaini, M.Y.5
Garmestani, H.6
Li, D.7
Dahmen, K.8
-
6
-
-
46249092101
-
-
Choi, S.U.S., 1995. Enhancing thermal conductivity of fluids with nanoparticles. In: Sininer, D.A., Wang, H.P. (Eds.), Developments and Applications of Non-Newtonian Flows, ASME, New York, FED- vol. 231/MD-Vol. 66.
-
Choi, S.U.S., 1995. Enhancing thermal conductivity of fluids with nanoparticles. In: Sininer, D.A., Wang, H.P. (Eds.), Developments and Applications of Non-Newtonian Flows, ASME, New York, FED- vol. 231/MD-Vol. 66.
-
-
-
-
9
-
-
0042418742
-
Temperature dependence of thermal conductivity enhancement for nanofluids
-
Das S.K., Putra N., Thiesen P., and Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. Journal of Heat Transfer 125 (2003) 567-574
-
(2003)
Journal of Heat Transfer
, vol.125
, pp. 567-574
-
-
Das, S.K.1
Putra, N.2
Thiesen, P.3
Roetzel, W.4
-
10
-
-
0001435905
-
Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles
-
Eastman J.A., Choi S.U.S., Li S., Yu W., and Thompson L.J. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters 78 6 (2001) 718-720
-
(2001)
Applied Physics Letters
, vol.78
, Issue.6
, pp. 718-720
-
-
Eastman, J.A.1
Choi, S.U.S.2
Li, S.3
Yu, W.4
Thompson, L.J.5
-
11
-
-
33644690829
-
Role of Brownian motion hydrodynamics on nanofluid thermal conductivity
-
Evans W., Fish J., and Keblinski P. Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Applied Physics Letter 88 (2006) 093116-1-3
-
(2006)
Applied Physics Letter
, vol.88
-
-
Evans, W.1
Fish, J.2
Keblinski, P.3
-
12
-
-
0242499391
-
Interfacial heat flow in carbon nanotube suspensions
-
Huxtable S.T., Cahill D.G., Shenogin S., et al. Interfacial heat flow in carbon nanotube suspensions. Nature Materials 2 (2003) 731-734
-
(2003)
Nature Materials
, vol.2
, pp. 731-734
-
-
Huxtable, S.T.1
Cahill, D.G.2
Shenogin, S.3
-
13
-
-
2942694254
-
The role of Brownian motion in the enhanced thermal conductivity of nanofluids
-
Jang S.P., and Choi S.U.S. The role of Brownian motion in the enhanced thermal conductivity of nanofluids. Applied Physics Letters 84 (2004) 4316-4318
-
(2004)
Applied Physics Letters
, vol.84
, pp. 4316-4318
-
-
Jang, S.P.1
Choi, S.U.S.2
-
14
-
-
33745233809
-
Cooling performance of a microchannel heat sink with nanofluids
-
Jang S.P., and Choi S.U.S. Cooling performance of a microchannel heat sink with nanofluids. Applied Thermal Engineering 26 (2006) 2457-2463
-
(2006)
Applied Thermal Engineering
, vol.26
, pp. 2457-2463
-
-
Jang, S.P.1
Choi, S.U.S.2
-
15
-
-
34447630661
-
Effects of various parameters on nanofluid thermal conductivity
-
Jang S.P., and Choi S.U.S. Effects of various parameters on nanofluid thermal conductivity. Journal of Heat transfer 129 (2007) 617-623
-
(2007)
Journal of Heat transfer
, vol.129
, pp. 617-623
-
-
Jang, S.P.1
Choi, S.U.S.2
-
16
-
-
46249119072
-
-
eff-model. ASME Journal of Heat Transfer.
-
eff-model. ASME Journal of Heat Transfer.
-
-
-
-
17
-
-
0141830183
-
Liquid flow in microchannels: experimental observations and computational analysis of microfluidics effect
-
Koo J., and Kleinstreuer C. Liquid flow in microchannels: experimental observations and computational analysis of microfluidics effect. Journal of Micromechanics and Microengineering 13 (2003) 568-579
-
(2003)
Journal of Micromechanics and Microengineering
, vol.13
, pp. 568-579
-
-
Koo, J.1
Kleinstreuer, C.2
-
20
-
-
26044464062
-
Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids
-
Koo J., and Kleinstreuer C. Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids. International Communications in Heat and Mass Transfer 32 (2005) 1111-1118
-
(2005)
International Communications in Heat and Mass Transfer
, vol.32
, pp. 1111-1118
-
-
Koo, J.1
Kleinstreuer, C.2
-
21
-
-
0032825295
-
Measuring thermal conductivity of fluids containing oxide nanoparticles
-
Lee S., Choi S.U.S., Li S., and Eastman J.A. Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer - Transactions of the ASME 121 2 (1999) 280-289
-
(1999)
Journal of Heat Transfer - Transactions of the ASME
, vol.121
, Issue.2
, pp. 280-289
-
-
Lee, S.1
Choi, S.U.S.2
Li, S.3
Eastman, J.A.4
-
23
-
-
33646739701
-
Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids)
-
Li C.H., and Peterson G.P. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). Journal of Applied Physics 99 (2006) 084314
-
(2006)
Journal of Applied Physics
, vol.99
, pp. 084314
-
-
Li, C.H.1
Peterson, G.P.2
-
24
-
-
46249088616
-
-
Li, J., 2008. Computational analysis of nanofluid flow in microchannels with applications to micro-heat sinks and bio-MEMS, Ph.D. dissertation, MAE department, NCSU, Raleigh, NC.
-
Li, J., 2008. Computational analysis of nanofluid flow in microchannels with applications to micro-heat sinks and bio-MEMS, Ph.D. dissertation, MAE department, NCSU, Raleigh, NC.
-
-
-
-
25
-
-
3242717935
-
Three-dimensional analysis of heat transfer in a micro-heat sink with single phase flow
-
Li J., Peterson G.P., and Cheng P. Three-dimensional analysis of heat transfer in a micro-heat sink with single phase flow. International Journal of Heat and Mass Transfer 47 (2004) 4215-4231
-
(2004)
International Journal of Heat and Mass Transfer
, vol.47
, pp. 4215-4231
-
-
Li, J.1
Peterson, G.P.2
Cheng, P.3
-
27
-
-
0031143265
-
Effective thermal conductivity of particulate composites with interfacial thermal resistance
-
Nan C.-W., Birringer R., Clarke D.R., and Gleiter H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. Journal of Applied Physics 81 (1997) 6692-6699
-
(1997)
Journal of Applied Physics
, vol.81
, pp. 6692-6699
-
-
Nan, C.-W.1
Birringer, R.2
Clarke, D.R.3
Gleiter, H.4
-
28
-
-
33745815300
-
Brownian motion based convective conductive model for the effective thermal conductivity of nanofluids
-
Prasher R.S., Bhattacharya P., and Phelan P.E. Brownian motion based convective conductive model for the effective thermal conductivity of nanofluids. Journal of Heat Transfer 128 (2006) 588-595
-
(2006)
Journal of Heat Transfer
, vol.128
, pp. 588-595
-
-
Prasher, R.S.1
Bhattacharya, P.2
Phelan, P.E.3
-
29
-
-
33646735359
-
Thermal conductivity of nanoparticle suspensions
-
Putnam S.A., Cahill D.G., Braun P.V., Ge Z., and Shimmin R.G. Thermal conductivity of nanoparticle suspensions. Journal of Applied Physics 99 (2006) 084308-1-084308-6
-
(2006)
Journal of Applied Physics
, vol.99
-
-
Putnam, S.A.1
Cahill, D.G.2
Braun, P.V.3
Ge, Z.4
Shimmin, R.G.5
-
30
-
-
35348819950
-
Molecular dynamics simulation of effective thermal conductivity and study of enhanced thermal transport mechanism in nanofluids
-
Sarkar S., and Selvam R.P. Molecular dynamics simulation of effective thermal conductivity and study of enhanced thermal transport mechanism in nanofluids. Journal of Applied Physics 102 (2007) 074302-1-7
-
(2007)
Journal of Applied Physics
, vol.102
-
-
Sarkar, S.1
Selvam, R.P.2
-
31
-
-
33751105214
-
Study of thermal transport in nanoparticle suspensions using forced Rayleigh scattering
-
Venerus D.C., Kabadi M.S., Lee S., and Peres-Luna V. Study of thermal transport in nanoparticle suspensions using forced Rayleigh scattering. Journal of Applied Physics 100 (2006) 094310-1-5
-
(2006)
Journal of Applied Physics
, vol.100
-
-
Venerus, D.C.1
Kabadi, M.S.2
Lee, S.3
Peres-Luna, V.4
-
32
-
-
33745747708
-
Modeling transient absorption and thermal conductivity in a simple nanofluid
-
Vladkov M., and Barrat J.L. Modeling transient absorption and thermal conductivity in a simple nanofluid. Nanoletters 6 6 (2006) 1224-1228
-
(2006)
Nanoletters
, vol.6
, Issue.6
, pp. 1224-1228
-
-
Vladkov, M.1
Barrat, J.L.2
-
33
-
-
0036966697
-
Colloidal metal particles as probes of nanoscale thermal transport in fluids
-
Wilson O.M., Hu X., Cahill D.G., and Braun P.V. Colloidal metal particles as probes of nanoscale thermal transport in fluids. Physical Review B 66 (2002) 224301-1-6
-
(2002)
Physical Review B
, vol.66
-
-
Wilson, O.M.1
Hu, X.2
Cahill, D.G.3
Braun, P.V.4
-
34
-
-
0037570768
-
Friction factors in smooth trapezoidal silicon microchannels with different aspect ratios
-
Wu H.Y., and Cheng P. Friction factors in smooth trapezoidal silicon microchannels with different aspect ratios. International Journal of Heat and Mass Transfer 46 14 (2003) 2519-2525
-
(2003)
International Journal of Heat and Mass Transfer
, vol.46
, Issue.14
, pp. 2519-2525
-
-
Wu, H.Y.1
Cheng, P.2
-
35
-
-
0036537378
-
Thermal conductivity enhancement of suspensions containing nanosized alumina particles
-
Xie H.Q., Wang J.C., Xi T.G., Liu Y., Ai F., and Wu Q. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. Journal of Applied Physics 91 7 (2002) 4568-4572
-
(2002)
Journal of Applied Physics
, vol.91
, Issue.7
, pp. 4568-4572
-
-
Xie, H.Q.1
Wang, J.C.2
Xi, T.G.3
Liu, Y.4
Ai, F.5
Wu, Q.6
-
38
-
-
33645671456
-
Model for the effective thermal conductivity of carbon nanotube composites
-
Xue Q.Z. Model for the effective thermal conductivity of carbon nanotube composites. Nanotechnology 17 (2006) 1655-1660
-
(2006)
Nanotechnology
, vol.17
, pp. 1655-1660
-
-
Xue, Q.Z.1
-
39
-
-
46249122041
-
-
Zhou, L.P., Wang, B.X., 2002. Experimental research on the thermophysical properties of nanoparticle suspensions using the quasi-steady method. Annual Proceeding of Chinese Engineering Thermophysics. pp. 889-892 (in Chinese).
-
Zhou, L.P., Wang, B.X., 2002. Experimental research on the thermophysical properties of nanoparticle suspensions using the quasi-steady method. Annual Proceeding of Chinese Engineering Thermophysics. pp. 889-892 (in Chinese).
-
-
-
|