-
1
-
-
21344470923
-
Circadian rhythms from multiple oscillators: Lessons from diverse organisms
-
Bell-Pedersen D, et al. (2005) Circadian rhythms from multiple oscillators: Lessons from diverse organisms. Nat Rev Genet 6(7):544-556.
-
(2005)
Nat Rev Genet
, vol.6
, Issue.7
, pp. 544-556
-
-
Bell-Pedersen, D.1
-
2
-
-
68849098242
-
Evidence for the adaptive significance of circadian rhythms
-
Yerushalmi S, Green RM (2009) Evidence for the adaptive significance of circadian rhythms. Ecol Lett 12(9):970-981.
-
(2009)
Ecol Lett
, vol.12
, Issue.9
, pp. 970-981
-
-
Yerushalmi, S.1
Green, R.M.2
-
3
-
-
84865204375
-
Complexity in the wiring and regulation of plant circadian networks
-
Nagel DH, Kay SA (2012) Complexity in the wiring and regulation of plant circadian networks. Curr Biol 22(16):R648-R657.
-
(2012)
Curr Biol
, vol.22
, Issue.16
, pp. R648-R657
-
-
Nagel, D.H.1
Kay, S.A.2
-
4
-
-
77953293491
-
An expanding universe of circadian networks in higher plants
-
Pruneda-Paz JL, Kay SA (2010) An expanding universe of circadian networks in higher plants. Trends Plant Sci 15(5):259-265.
-
(2010)
Trends Plant Sci
, vol.15
, Issue.5
, pp. 259-265
-
-
Pruneda-Paz, J.L.1
Kay, S.A.2
-
5
-
-
84859508042
-
Mapping the core of the arabidopsis circadian clock defines the network structure of the oscillator
-
Huang W, et al. (2012) Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science 336(6077):75-79.
-
(2012)
Science
, vol.336
, Issue.6077
, pp. 75-79
-
-
Huang, W.1
-
6
-
-
77957260103
-
Data assimilation constrains new connections and components in a complex, eukaryotic circadian clock model
-
Pokhilko A, et al. (2010) Data assimilation constrains new connections and components in a complex, eukaryotic circadian clock model. Mol Syst Biol 6:416.
-
(2010)
Mol Syst Biol
, vol.6
, pp. 416
-
-
Pokhilko, A.1
-
7
-
-
40849124054
-
Comparative transcriptome of diurnally oscillating genes and hormone-responsive genes in arabidopsis thaliana: Insight into circadian clock-controlled daily responses to common ambient stresses in plants
-
Mizuno T, Yamashino T (2008) Comparative transcriptome of diurnally oscillating genes and hormone-responsive genes in Arabidopsis thaliana: Insight into circadian clock-controlled daily responses to common ambient stresses in plants. Plant Cell Physiol 49(3):481-487.
-
(2008)
Plant Cell Physiol
, vol.49
, Issue.3
, pp. 481-487
-
-
Mizuno, T.1
Yamashino, T.2
-
8
-
-
84897418780
-
Wheels within wheels: The plant circadian system
-
Hsu PY, Harmer SL (2014) Wheels within wheels: The plant circadian system. Trends Plant Sci 19(4):240-249.
-
(2014)
Trends Plant Sci
, vol.19
, Issue.4
, pp. 240-249
-
-
Hsu, P.Y.1
Harmer, S.L.2
-
9
-
-
34347374098
-
A complex genetic interaction between arabidopsis thaliana TOC1 and CCA1/LHY in driving the circadian clock and in output regulation
-
Ding Z, Doyle MR, Amasino RM, Davis SJ (2007) A complex genetic interaction between Arabidopsis thaliana TOC1 and CCA1/LHY in driving the circadian clock and in output regulation. Genetics 176(3):1501-1510.
-
(2007)
Genetics
, vol.176
, Issue.3
, pp. 1501-1510
-
-
Ding, Z.1
Doyle, M.R.2
Amasino, R.M.3
Davis, S.J.4
-
10
-
-
0035800467
-
Reciprocal regulation between TOC1 and LHY/CCA1 within the arabidopsis circadian clock
-
Alabadí D, et al. (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293(5531):880-883.
-
(2001)
Science
, vol.293
, Issue.5531
, pp. 880-883
-
-
Alabadí, D.1
-
11
-
-
84857383458
-
Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor
-
Gendron JM, et al. (2012) Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proc Natl Acad Sci USA 109(8):3167-3172.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, Issue.8
, pp. 3167-3172
-
-
Gendron, J.M.1
-
12
-
-
40149105297
-
Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules
-
Michael TP, et al. (2008) Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules. PLoS Genet 4(2):e14.
-
(2008)
PLoS Genet
, vol.4
, Issue.2
, pp. e14
-
-
Michael, T.P.1
-
13
-
-
33745453173
-
The molecular basis of temperature compensation in the arabidopsis circadian clock
-
Gould PD, et al. (2006) The molecular basis of temperature compensation in the Arabidopsis circadian clock. Plant Cell 18(5):1177-1187.
-
(2006)
Plant Cell
, vol.18
, Issue.5
, pp. 1177-1187
-
-
Gould, P.D.1
-
14
-
-
0032553569
-
Phytochromes and cryptochromes in the entrainment of the arabidopsis circadian clock
-
Somers DE, Devlin PF, Kay SA (1998) Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282(5393):1488-1490.
-
(1998)
Science
, vol.282
, Issue.5393
, pp. 1488-1490
-
-
Somers, D.E.1
Devlin, P.F.2
Kay, S.A.3
-
15
-
-
0034626762
-
Functional interaction of phytochrome B and cryptochrome 2
-
Más P, Devlin PF, Panda S, Kay SA (2000) Functional interaction of phytochrome B and cryptochrome 2. Nature 408(6809):207-211.
-
(2000)
Nature
, vol.408
, Issue.6809
, pp. 207-211
-
-
Más, P.1
Devlin, P.F.2
Panda, S.3
Kay, S.A.4
-
16
-
-
34548813657
-
ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light
-
Kim W-Y, et al. (2007) ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449(7160):356-360.
-
(2007)
Nature
, vol.449
, Issue.7160
, pp. 356-360
-
-
Kim, W.-Y.1
-
17
-
-
84880391363
-
LNK genes integrate light and clock signaling networks at the core of the arabidopsis oscillator
-
Rugnone ML, et al. (2013) LNK genes integrate light and clock signaling networks at the core of the Arabidopsis oscillator. Proc Natl Acad Sci USA 110(29):12120-12125.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, Issue.29
, pp. 12120-12125
-
-
Rugnone, M.L.1
-
18
-
-
78650442768
-
Ambient thermometers in plants: From physiological outputs towards mechanisms of thermal sensing
-
McClung CR, Davis SJ (2010) Ambient thermometers in plants: From physiological outputs towards mechanisms of thermal sensing. Curr Biol 20(24):R1086-R1092.
-
(2010)
Curr Biol
, vol.20
, Issue.24
, pp. R1086-R1092
-
-
McClung, C.R.1
Davis, S.J.2
-
19
-
-
20444367685
-
Natural allelic variation in the temperature-compensation mechanisms of the arabidopsis thaliana circadian clock
-
Edwards KD, Lynn JR, Gyula P, Nagy F, Millar AJ (2005) Natural allelic variation in the temperature-compensation mechanisms of the Arabidopsis thaliana circadian clock. Genetics 170(1):387-400.
-
(2005)
Genetics
, vol.170
, Issue.1
, pp. 387-400
-
-
Edwards, K.D.1
Lynn, J.R.2
Gyula, P.3
Nagy, F.4
Millar, A.J.5
-
20
-
-
20444382245
-
PSEUDO-RESPONSE REGULATOR 7 and 9 are partially redundant genes essential for the temperature responsiveness of the arabidopsis circadian clock
-
Salomé PA, McClung CR (2005) PSEUDO-RESPONSE REGULATOR 7 and 9 are partially redundant genes essential for the temperature responsiveness of the Arabidopsis circadian clock. Plant Cell 17(3):791-803.
-
(2005)
Plant Cell
, vol.17
, Issue.3
, pp. 791-803
-
-
Salomé, P.A.1
McClung, C.R.2
-
21
-
-
79953730633
-
REVEILLE8 and PSEUDO-REPONSE REGULATOR5 form a negative feedback loop within the arabidopsis circadian clock
-
Rawat R, et al. (2011) REVEILLE8 and PSEUDO-REPONSE REGULATOR5 form a negative feedback loop within the Arabidopsis circadian clock. PLoS Genet 7(3):e1001350.
-
(2011)
PLoS Genet
, vol.7
, Issue.3
-
-
Rawat, R.1
-
22
-
-
78650894699
-
The role of the arabidopsis morning loop components CCA1, LHY, PRR7, and PRR9 in temperature compensation
-
Salomé PA, Weigel D, McClung CR (2010) The role of the Arabidopsis morning loop components CCA1, LHY, PRR7, and PRR9 in temperature compensation. Plant Cell 22(11):3650-3661.
-
(2010)
Plant Cell
, vol.22
, Issue.11
, pp. 3650-3661
-
-
Salomé, P.A.1
Weigel, D.2
McClung, C.R.3
-
23
-
-
74949084336
-
Genome-wide mapping of alternative splicing in arabidopsis thaliana
-
Filichkin SA, et al. (2010) Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res 20(1):45-58.
-
(2010)
Genome Res
, vol.20
, Issue.1
, pp. 45-58
-
-
Filichkin, S.A.1
-
24
-
-
84860128193
-
Alternative splicing mediates responses of the arabidopsis circadian clock to temperature changes
-
James AB, et al. (2012) Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes. Plant Cell 24(3):961-981.
-
(2012)
Plant Cell
, vol.24
, Issue.3
, pp. 961-981
-
-
James, A.B.1
-
25
-
-
84904066428
-
Transcriptional regulation of LUX by CBF1 mediates cold input to the circadian clock in arabidopsis
-
Chow BY, et al. (2014) Transcriptional regulation of LUX by CBF1 mediates cold input to the circadian clock in Arabidopsis. Curr Biol 24(13):1518-1524.
-
(2014)
Curr Biol
, vol.24
, Issue.13
, pp. 1518-1524
-
-
Chow, B.Y.1
-
26
-
-
84904819035
-
A genome-scale resource for the functional characterization of arabidopsis transcription factors
-
Pruneda-Paz JL, et al. (2014) A genome-scale resource for the functional characterization of Arabidopsis transcription factors. Cell Reports 8(2):622-632.
-
(2014)
Cell Reports
, vol.8
, Issue.2
, pp. 622-632
-
-
Pruneda-Paz, J.L.1
-
27
-
-
84863239723
-
FLOWERING BHLH transcriptional activators control expression of the photoperiodic flowering regulator CONSTANS in arabidopsis
-
Ito S, et al. (2012) FLOWERING BHLH transcriptional activators control expression of the photoperiodic flowering regulator CONSTANS in Arabidopsis. Proc Natl Acad Sci USA 109(9):3582-3587.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, Issue.9
, pp. 3582-3587
-
-
Ito, S.1
-
28
-
-
0042421751
-
The arabidopsis basic/helix-loop-helix transcription factor family
-
Toledo-Ortiz G, Huq E, Quail PH (2003) The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15(8):1749-1770.
-
(2003)
Plant Cell
, vol.15
, Issue.8
, pp. 1749-1770
-
-
Toledo-Ortiz, G.1
Huq, E.2
Quail, P.H.3
-
29
-
-
0037694799
-
The basic helix-loop-helix transcription factor family in plants: A genome-wide study of protein structure and functional diversity
-
Heim MA, et al. (2003) The basic helix-loop-helix transcription factor family in plants: A genome-wide study of protein structure and functional diversity. Mol Biol Evol 20(5):735-747.
-
(2003)
Mol Biol Evol
, vol.20
, Issue.5
, pp. 735-747
-
-
Heim, M.A.1
-
30
-
-
58749109023
-
Genevestigator v3: A reference expression database for the meta-analysis of transcriptomes
-
Hruz T, et al. (2008) Genevestigator v3: A reference expression database for the meta-analysis of transcriptomes. Adv Bioinforma 2008:420747.
-
(2008)
Adv Bioinforma
, vol.2008
-
-
Hruz, T.1
-
31
-
-
40149093631
-
The DIURNAL project: Diurnal and circadian expression profiling, model-based pattern matching, and promoter analysis
-
Mockler TC, et al. (2007) The DIURNAL project: DIURNAL and circadian expression profiling, model-based pattern matching, and promoter analysis. Cold Spring Harb Symp Quant Biol 72:353-363.
-
(2007)
Cold Spring Harb Symp Quant Biol
, vol.72
, pp. 353-363
-
-
Mockler, T.C.1
-
32
-
-
33644813858
-
Positive and negative factors confer phase-specific circadian regulation of transcription in arabidopsis
-
Harmer SL, Kay SA (2005) Positive and negative factors confer phase-specific circadian regulation of transcription in Arabidopsis. Plant Cell 17(7):1926-1940.
-
(2005)
Plant Cell
, vol.17
, Issue.7
, pp. 1926-1940
-
-
Harmer, S.L.1
Kay, S.A.2
-
33
-
-
0032568796
-
Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression
-
Wang ZY, Tobin EM (1998) Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93(7):1207-1217.
-
(1998)
Cell
, vol.93
, Issue.7
, pp. 1207-1217
-
-
Wang, Z.Y.1
Tobin, E.M.2
-
34
-
-
0006180620
-
The late elongated hypocotyl mutation of arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering
-
Schaffer R, et al. (1998) The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93(7): 1219-1229.
-
(1998)
Cell
, vol.93
, Issue.7
, pp. 1219-1229
-
-
Schaffer, R.1
-
35
-
-
0028902249
-
Circadian clock mutants in arabidopsis identified by luciferase imaging
-
Millar AJ, Carré IA, Strayer CA, Chua NH, Kay SA (1995) Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science 267(5201):1161-1163.
-
(1995)
Science
, vol.267
, Issue.5201
, pp. 1161-1163
-
-
Millar, A.J.1
Carré, I.A.2
Strayer, C.A.3
Chua, N.H.4
Kay, S.A.5
-
36
-
-
84879528088
-
Crosstalk between the circadian clock and innate immunity in arabidopsis
-
Zhang C, et al. (2013) Crosstalk between the circadian clock and innate immunity in Arabidopsis. PLoS Pathog 9(6):e1003370.
-
(2013)
PLoS Pathog
, vol.9
, Issue.6
-
-
Zhang, C.1
-
37
-
-
0030001055
-
Activation mechanism of the multifunctional transcription factor repressor-activator protein 1 (Rap1p)
-
Drazinic CM, Smerage JB, López MC, Baker HV (1996) Activation mechanism of the multifunctional transcription factor repressor-activator protein 1 (Rap1p). Mol Cell Biol 16(6):3187-3196.
-
(1996)
Mol Cell Biol
, vol.16
, Issue.6
, pp. 3187-3196
-
-
Drazinic, C.M.1
Smerage, J.B.2
López, M.C.3
Baker, H.V.4
-
38
-
-
73249153024
-
Arabidopsis WUSCHEL is a bifunctional transcription factor that acts as a repressor in stem cell regulation and as an activator in floral patterning
-
Ikeda M, Mitsuda N, Ohme-Takagi M (2009) Arabidopsis WUSCHEL is a bifunctional transcription factor that acts as a repressor in stem cell regulation and as an activator in floral patterning. Plant Cell 21(11):3493-3505.
-
(2009)
Plant Cell
, vol.21
, Issue.11
, pp. 3493-3505
-
-
Ikeda, M.1
Mitsuda, N.2
Ohme-Takagi, M.3
-
39
-
-
79953254420
-
Evolutionary and comparative analysis of MYB and bHLH plant transcription factors
-
Feller A, Machemer K, Braun EL, Grotewold E (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66(1):94-116.
-
(2011)
Plant J
, vol.66
, Issue.1
, pp. 94-116
-
-
Feller, A.1
Machemer, K.2
Braun, E.L.3
Grotewold, E.4
-
40
-
-
65549088967
-
A role for casein kinase 2 in the mechanism underlying circadian temperature compensation
-
Mehra A, et al. (2009) A role for casein kinase 2 in the mechanism underlying circadian temperature compensation. Cell 137(4):749-760.
-
(2009)
Cell
, vol.137
, Issue.4
, pp. 749-760
-
-
Mehra, A.1
-
41
-
-
84903365511
-
The time of day effects of warm temperature on flowering time involve PIF4 and PIF5
-
Thines BC, Youn Y, Duarte MI, Harmon FG (2014) The time of day effects of warm temperature on flowering time involve PIF4 and PIF5. J Exp Bot 65(4):1141-1151.
-
(2014)
J Exp Bot
, vol.65
, Issue.4
, pp. 1141-1151
-
-
Thines, B.C.1
Youn, Y.2
Duarte, M.I.3
Harmon, F.G.4
-
42
-
-
84899139852
-
Ambient temperature signal feeds into the circadian clock transcriptional circuitry through the EC night-time repressor in arabidopsis thaliana
-
Mizuno T, et al. (2014) Ambient temperature signal feeds into the circadian clock transcriptional circuitry through the EC night-time repressor in Arabidopsis thaliana. Plant Cell Physiol 55(5):958-976.
-
(2014)
Plant Cell Physiol
, vol.55
, Issue.5
, pp. 958-976
-
-
Mizuno, T.1
-
43
-
-
62449114708
-
A functional genomics approach reveals CHE as a component of the arabidopsis circadian clock
-
Pruneda-Paz JL, Breton G, Para A, Kay SA (2009) A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. Science 323(5920): 1481-1485.
-
(2009)
Science
, vol.323
, Issue.5920
, pp. 1481-1485
-
-
Pruneda-Paz, J.L.1
Breton, G.2
Para, A.3
Kay, S.A.4
-
44
-
-
0036581417
-
GATEWAY vectors for agrobacterium-mediated plant transformation
-
Karimi M, Inzé D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7(5):193-195.
-
(2002)
Trends Plant Sci
, vol.7
, Issue.5
, pp. 193-195
-
-
Karimi, M.1
Inzé, D.2
Depicker, A.3
-
45
-
-
0031159538
-
Quantitative analysis of drosophila period gene transcription in living animals
-
Plautz JD, et al. (1997) Quantitative analysis of Drosophila period gene transcription in living animals. J Biol Rhythms 12(3):204-217.
-
(1997)
J Biol Rhythms
, vol.12
, Issue.3
, pp. 204-217
-
-
Plautz, J.D.1
-
47
-
-
22044444886
-
FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in arabidopsis
-
Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA (2005) FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309(5732): 293-297.
-
(2005)
Science
, vol.309
, Issue.5732
, pp. 293-297
-
-
Imaizumi, T.1
Schultz, T.F.2
Harmon, F.G.3
Ho, L.A.4
Kay, S.A.5
-
48
-
-
35348910170
-
FKF1 and GIGANTEA complex formation is required for day-length measurement in arabidopsis
-
Sawa M, Nusinow DA, Kay SA, Imaizumi T (2007) FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318(5848): 261-265.
-
(2007)
Science
, vol.318
, Issue.5848
, pp. 261-265
-
-
Sawa, M.1
Nusinow, D.A.2
Kay, S.A.3
Imaizumi, T.4
|